金属热处理 ›› 2023, Vol. 48 ›› Issue (2): 158-163.DOI: 10.13251/j.issn.0254-6051.2023.02.024

• 工艺研究 • 上一篇    下一篇

退火处理对CoCrFeNiB0.05Ti0.6高熵合金组织与力学性能的影响

姜越1, 谭亚平1, 朱柏祥1, 张天栋2   

  1. 1.哈尔滨理工大学 材料科学与化学工程学院, 黑龙江 哈尔滨 150080;
    2.哈尔滨理工大学 电气与电子工程学院, 黑龙江 哈尔滨 150080
  • 收稿日期:2022-09-22 修回日期:2022-12-19 出版日期:2023-02-25 发布日期:2023-03-22
  • 作者简介:姜 越(1963—),男,教授,博士,主要研究方向为高熵合金,E-mail: yjiang@hrbust.edu.cn
  • 基金资助:
    黑龙江省优秀青年基金(YQ2020E031)

Effect of annealing treatment on microstructure and mechanical properties of CoCrFeNiB0.05Ti0.6 high entropy alloy

Jiang Yue1, Tan Yaping1, Zhu Baixiang1, Zhang Tiandong2   

  1. 1. School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin Heilongjiang 150080, China;
    2. School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin Heilongjiang 150080, China
  • Received:2022-09-22 Revised:2022-12-19 Online:2023-02-25 Published:2023-03-22

摘要: 采用机械合金化法制备CoCrFeNiB0.05Ti0.6高熵合金粉末,通过粉末冶金法制备了CoCrFeNiB0.05Ti0.6高熵合金。随后将烧结试样分别在450、650、850 ℃退火处理12 h。利用X射线衍射仪分析CoCrFeNiB0.05Ti0.6高熵合金退火前后的相结构;通过SEM和EDS分析CoCrFeNiB0.05Ti0.6高熵合金退火前后的微观组织形貌和元素分布情况;通过HXD-1000维氏硬度计和WDW-200万能试验测试机测量试样维氏硬度和压缩强度。结果表明,烧结态合金主要为FCC相伴随少量的HCP和Laves相;随着退火温度升高,BCC与硼化物等新相相继生成,Cr元素由浅灰色树枝晶向深灰色枝晶间的扩散程度逐渐增大,B元素与其它元素构成新的硼化物。烧结态合金为树枝晶与枝晶间组织,退火后枝晶间组织占比增大,树枝晶减少。CoCrFeNiB0.05Ti0.6高熵合金的硬度、压缩强度随退火温度升高而增大,在850 ℃退火后达到最大值,分别为391.40 HV0.2和664.6 MPa,这是固溶强化、细晶强化、第二相强化共同作用的结果。

关键词: 高熵合金, 退火处理, 相结构, 硬度, 压缩强度

Abstract: The high entropy alloy powder of CoCrFeNiB0.05Ti0.6 was prepared by means of mechanical alloying method, and the CoCrFeNiB0.05Ti0.6 high entropy alloy was sintered by the powder metallurgy method. Then the sintered specimens were annealed at 450, 650 and 850 ℃ for 12 h, respectively. The phase structure of the CoCrFeNiB0.05Ti0.6 high entropy alloy before and after annealing were analyzed by using the X-ray diffractometer, the microstructure morphology and elemental distribution of the CoCrFeNiB0.05Ti0.6 high-entropy alloy before and after annealing were analyzed by SEM and EDS, while the Vickers hardness and compression strength of the specimens were measured by HXD-1000 Vickers hardness tester and WDW-200 universal experimental tester, respectively. The results show that the sintered alloy is mainly FCC phase accompanied by a small amount of HCP and Laves phase. And new phases such as BCC and borides are generated successively as the annealing temperature increasing. Furthermore, it can be seen that the diffusion of the element Cr from light gray dendrites to dark gray dendrites grows gradually, and the element B forms new borides with other elements. The sintered alloy is dendrite and interdendrite structure, and the proportion of interdendrite structure increases and dendrite structure decreases after annealing. In addition, the higher the annealing temperature is, the greater hardness and compressive strength of the CoCrFeNiB0.05Ti0.6high entropy alloy will be, reaching maximum values of 391.40 HV0.2 and 664.6 MPa respectively after annealing at 850 ℃, which is the results of combined effects of solid solution strengthening, fine grain strengthening, and second phase strengthening.

Key words: high entropy alloy, annealing heat treatment, phase structure, hardness, compressive strength

中图分类号: