Please wait a minute...
金属学报  2007, Vol. 42 Issue (1): 64-70     
  论文 本期目录 | 过刊浏览 |
316L不锈钢强流脉冲电子束表面改性研究 Part I 表面选择净化及机理
张可敏;杨大智;邹建新;董闯
大连理工大学材料学院
SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH CURRENT PULSED ELECTRON BEAM Part I Selective surface purification and its mechanism
;;;
大连理工大学材料学院
引用本文:

张可敏; 杨大智; 邹建新; 董闯 . 316L不锈钢强流脉冲电子束表面改性研究 Part I 表面选择净化及机理[J]. 金属学报, 2007, 42(1): 64-70 .
, , , . SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH CURRENT PULSED ELECTRON BEAM Part I Selective surface purification and its mechanism[J]. Acta Metall Sin, 2007, 42(1): 64-70 .

全文: PDF(885 KB)  
摘要: 本文详细研究了强流脉冲电子束对316L不锈钢表面改性的过程和机理。结果表明,316L不锈钢中的MnS夹杂物是轰击过程中形成火山坑的核心,其自身或界面过热喷发是火山坑的成因。随着轰击次数的增加,表层中MnS夹杂物随喷发而逐渐减少,实现了材料的表面选择净化。与此同时,表面缺陷在反复轰击过程中得到修复,即火山坑的密度随轰击次数减少,形态也逐渐由心部有孔转变为心部无孔。
关键词 强流脉冲电子束不锈钢表面净化火山坑    
Abstract:In this paper, the processing and corresponding mechanisms of the surface modification of 316L stainless steel by high current pulsed electron beam were studied in detail. The results showed that MnS inclusions in the 316LSS served as the nucleation sites for craters formed during the bombardment. The overheating of these inclusions or their interfaces and following eruptions are believed to be the reason for the crater formations. As a result, MnS inclusions in the surface layer decreased with the increasing number of pulses, leading to a selective surface purification of the material. On the other hand, the physical damages induced by the electron beam bombardment are repaired after repeated pulses, that is, the crater density decreases with the increasing number of bombardments, meanwhile the holes in the crater centers are removed gradually.
Key wordsHigh current pulsed electron beam    Stainless steel    Selective surface purification    Craters
收稿日期: 2006-04-04     
ZTFLH:  O482.2  
[1] Pogrebnjak A D,Ladysev V S,Pogrebnjak N A,Michaliov A D,Shablya V T,Valyaev A N,Valyaev A A,Loboda V B.Vacuum,2000;58:45
[2] Pogrebnjak A D,Mikhaliov A D,Pogrebnjak N A Jr., Tsvintarnaya Y V,Lavrentiev V I, Iljashenko M,Valyaev A N,Bratushka S,Zecca A,Sandrik R.Phys Lett,1998; 241A:357
[3] Ivanov Y,Matz W,Rotshtein V,Gunzel R,Shevchenko N.Surf Coat Technol,2002;150:188
[4] Proskurovsky D I,Rotshtein V P,Ozur G E,Markov A B,Nazarov D S.J Vac Sci Technol,1998;16A:2480
[5] Proskurovsky D I,Rotshtein V P,Ozur G E,Ivanov Y F, Markov A B.Surf Coat Technol,2000;125:49
[6] Pogrebnjak A D,Bratushka S,Boyko V I,Shamanin I V, Tsvintaruaya Y V.Nucl Instrum Methods Phys Res,1998; 145B:373
[7] Pogrebnjak A D,Shumakova N I.Surf Coat Technol, 1999; 122:183
[8] Hao S Z,Gao B,Wu A M,Zou J X,Qin Y,Dong C,An J, Guan Q F.Nucl Instrum Methods Phys Res,2005;240B: 646
[9] Zou J X,Grosdidier T,Zhang K M,Dong C.Acta Mater, 2006;54:5409
[10] Hao S Z,Gao B,Wu A M,Zou J X,Qin Y,Dong C,Guan Q F.Mater Sci Forum,2005;475-479:3959
[11] Gao B,Hao S Z,Zou J X,Grosdidier T,Jiang L M,Dong C,Zhou J Y.J Vac Sci Technol, 2005;23A:1538
[12] Qin Y,Dong C,Wang X G,Hao S Z,Wu A M,Zou J X, Liu Y.J Vac Sci Technol, 2003;21A:1934
[13] Korotaev A D,Ovchinnikov S V,Pochivalov Y I,Tyu- mentsev A N,Shchipakin D A,Tretjak M V,Isakov I F, Remnev G E.Surf Coat Technol,1998;105:84
[14] Shulov V A,Nochovnaya N A.Nucl Instrum Methods Phys Res,1999;148B:154
[15] Zhu X P,Lei M K,Dong Z H,Miao S M,Ma T C.Surf Coat Technol,2003;173:105
[16] Wood B,Perry A,Bitteker L J,Waganaar W j.Surf Coat Technol,1998;108/109:171
[17] Qin Y,Wang X G,Dong C,Hao S Z,Liu Y,Zou J X,Wu A M,Guan Q F.Acta Phys Sin,2003;52:3043 (秦颖,王晓钢,董闯,郝胜智,刘悦,邹建新,吴爱民,关庆丰.物理学报,2003;52:3043)
[18] Dong C,Wu A M,Hao S Z,Zou J X,Liu Z M,Zhong P, Zhang A M,Xu T,Chen J M,Xu J,Liu Q,Zhou Z R.Surf Coat Technol,2003;163-164:620
[19] Ryan M P,Williams D E,Chater R J,Hutton B M, McPhail D S.Nature,2002;415:770
[20] Newman R C.Natune,2002;415:743
[21] Qin Y,Zou J X,Dong C,Wang X G,Wu A M,Liu Y,Hao S Z,Guan Q F.Nucl Instrum Methods Phys Res,2004; 225B:544
[22] Zou J X,Qin Y,Dong C,Wu A M,Hao S Z,Wang X G.J Vac Sci Technol, 2004;22A:545
[23] Aziz M J.J Appl Phys,1982;53:1158
[24] Zou J X,Wu A M,Dong C,Hao S Z,Liu Z M,Ma H T, Surf Coat Technol, 2004;183:261
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[13] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[14] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[15] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.