|本期目录/Table of Contents|

[1]高巧玲,范功端*.固体废弃物在轻质泡沫混凝土中应用研究进展[J].武汉工程大学学报,2021,43(05):539-545.[doi:10.19843/j.cnki.CN42-1779/TQ.202101010]
 GAO Qiaoling,FAN Gongduan*.Research on Application of Solid Waste in Lightweight Foam Concrete[J].Journal of Wuhan Institute of Technology,2021,43(05):539-545.[doi:10.19843/j.cnki.CN42-1779/TQ.202101010]
点击复制

固体废弃物在轻质泡沫混凝土中应用研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年05期
页码:
539-545
栏目:
资源与环境工程
出版日期:
2021-10-31

文章信息/Info

Title:
Research on Application of Solid Waste in Lightweight Foam Concrete
文章编号:
1674 - 2869(2021)05 - 0539 - 07
作者:
高巧玲12范功端*2
1. 福建船政交通职业学院土木工程学院,福建 福州 350007;2. 福州大学土木工程学院,福建 福州 350108
Author(s):
GAO Qiaoling12 FAN Gongduan2*
1. College of Civil Engineering, Fujian Chuanzheng Communications College, Fuzhou 350000,China;2. College of Civil Engineering, Fuzhou University, Fuzhou 350000, China
关键词:
轻质泡沫混凝土固体废弃物可持续性力学性能物化特性
Keywords:
foamed concrete solid waste sustainability mechanical property physical and chemical property
分类号:
TU528.58
DOI:
10.19843/j.cnki.CN42-1779/TQ.202101010
文献标志码:
A
摘要:
固体废弃物在轻质泡沫混凝土中应用可减轻结构自重,具有重复再利用的性能,对建筑结构可持续发展及节能方面起到重要作用。着重介绍了工业无机、化工有机和建筑等固体废弃物作为轻质泡沫混凝土中的组成材料,并从微观结构的角度,综述了固体废弃物对轻质泡沫混凝土制备与性能的影响。同时,深入分析了固体废弃物中独特的成分以及资源化利用现状、指出了固体废弃物应用于轻质泡沫混凝土的生产工艺以及在工程中的应用研究,以及轻质泡沫混凝土在现代工程建设中的重要性,为混凝土的可持续性和环保性的发展研究提供参考。
Abstract:
Application of solid waste in lightweight foam concrete has been paid attentions in recent years. Light foam concrete can reduce the weight of the structure and can be used repeatedly, and plays an important role in the sustainable development and energy saving of the building structure. This article focuses on the constituent materials of industrial inorganic solid waste, chemical organic solid waste and construction solid waste in lightweight foam concrete. From the perspective of microstructure, the influence of solid waste on the preparation and performance of lightweight foam concrete was reviewed. Based on the literature review,the unique composition of solid waste and the properties of the resulting materials were analyzed. It emphasizes the current status of solid waste in the production process of lightweight foam concrete and its application in engineering, and finally proposes the importance of lightweight foam concrete in modern engineering construction. This work provides reference for the sustainability and environmental protection development of concrete in the future.

参考文献/References:

[1] MA J F,WANG T,QI S,et al. Effects of structure on the properties of low-molecular-weight superplasticizer using phosphonate as the adsorption group[J]. Colloid and Polymer Science,2018,296(3):503-514. [2] LI Y, ZHANG X G, CUI Y X, et al. Anti-corrosion enhancement of superhydrophobic coating utilizing oxygen vacancy modified potassium titanate whisker[J]. Chemical Engineering Journal,2019,374(15)374:1326-1336. [3] ZHU W J,LI X T,WU D,et al. Synthesis of spherical mesoporous silica materials by pseudomorphic transformation of silica fume a nd its Pb2+ removal properties[J]. Microporous and Mesoporous Materials,2016,222(1):192-201. [4] BAI T,SONG Z G,WANG H,et al. Performance evaluation of metakaolin geopolymer modified by different solid wastes[J]. Journal of Cleaner Production,2019,226(20):114-121. [5] SAAFI M, ANDREW K, TANG P L, et al. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites[J]. Construction and Building Materials,2013,49(1):46-55. [6] CHICA L, ALZATEE A. Cellular concrete review: New trends for application in construction[J]. Construction and Building Materials,2019,200(10):637-647. [7] RAJ A, SATHYAN D, MINI K M. Physical and functional characteristics of foam concrete: A review[J]. Construction and Building Materials,2019,221(10):787-799. [8] 郑会奇,陈晋,李延军. 二维晶体MXene的制备及催化领域的应用研究进展[J]. 硅酸盐通报,2018,37(6):1908-1913. [9] 柴倩,张耀君. 水镁石纤维增韧炉底渣基地质聚合物的制备和增韧机理[J]. 硅酸盐通报,2018,37(11):3392-3397. [10] PUERTAS F,AMAT T,FERNáNDEZ-JIMéNEZ A,et al. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres[J]. Cement and Concrete Research,2003,33(12):2031-2036. [11] HUSEIN MALKAWI A I,MUTASHER S A,QIU T J. Thermal-structure modeling and temperature control of roller compacted concrete gravity dam[J]. Journal of Performance of Constructed Facilities,2003,17(4):177-187. [12] SHE W, DU Y, ZHAO G, et al. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds[J]. Construction and Building Materials,2018,170(10):153-166. [13] HILAL A A, THOM N, DAWSON A. The use of additives to enhance properties of pre-formed foamed concrete[J]. International Journal of Engineering and Technology, 2015, 7(4): 286-293. [14] HILAL A A, THOM N, DAWSON A. On void structure and strength of foamed concrete made without/with additives [J]. Construction and Building Materials, 2015, 85(15): 157-164. [15] TCHAKOUTé H K,RüSCHER C H,KONG S,et al. Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash[J]. Journal of Sol Gel Science & Technology,2016,78(3):492-506. [16] SHI J, LIU B, HE Z, et al. A green ultra-lightweight chemically foamed concrete for building exterior: a feasibility study[J]. Journal of Cleaner Production,2020(15):125085. [17] KASHANI A, NGO T D, MENDIS P, et al. A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete[J]. Journal of Cleaner Production,2017,149(15):925-935. [18] TIAN Q Z,NAKAMA S,SASAKI K. Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios[J]. Science of the Total Environment,2019,687(15):1127-1137. [19] HAJIMOHAMMADI A, NGO T, KASHANI A. Sustainable one-part geopolymer foams with glass fines versus sand as aggregates[J]. Construction and Building Materials,2018,171(1):223-231. [20] LIM S K, TAN C S, LIM O Y, et al. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler[J]. Construction and Building Materials,2013,46(1):39-47. [21] SHAH S N, MO K H, YAP S P, et al. Lightweight foamed concrete as a promising avenue for incorporating waste materials: a review[J]. Resources, Conservation and Recycling,2021,164(1):105-103. [22] OKOYE F N,DURGAPRASAD J,SINGH N B. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete[J]. Ceramics International,2016,42(2):3000-3006. [23] 曹明礼,潘亚宏,袁继祖. 以高岭土作原料合成洗涤剂用助剂4A沸石的研究[J]. 武汉工业大学学报,2000,22(1):34-36. [24] 王亚超,张耀君,徐德龙. 碱激发硅灰-粉煤灰基矿物聚合物的研究[J]. 硅酸盐通报,2011,30(1):50-54. [25] LIM S K, TAN C S, LI B, et al. Utilizing high volumes quarry wastes in the production of lightweight foamed concrete[J]. Construction and Building Materials,2017,151(1):441-448. [26] ALVAREZ-AYUSO E,QUEROL X,PLANA F,et al. Environmental, physical and structural characteriza-tion of geopolymer matrixs synthesized from coal(co-)combustion fly ashes[J]. Journal of Hazardous Materials,2008,154(1):175-183. [27] CHENG Y Z,WANG S,LI J, et al. Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans[J]. Construction and Building Materials,2018,187(30):1031-1038. [28] BUSWELL R A, DE W R L, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112(1): 37-49. [29] 李自立,陈志波,胡屏,等. 粉煤灰与石灰改良花岗岩残积土压缩特性研究[J]. 水利与建筑工程学报,2019,17(1):82-86. [30] KANGNI F E, POYET S, Le BESCOP P, et al. Carbonation of model cement pastes: the mineralogical origin of microstructural changes and shrinkage[J]. Cement and Concrete Research, 2021, 144(1): 106446. [31] 梁欣,陈常连,周诗聪,等. 碳化硅添加对氮化硅转化为碳化硅晶粒形貌的影响[J]. 武汉工程大学学报,2019,41(1):64-68. [32] 钟园,丁峰,廖奇麟,等. 恩施红层砂岩细粒土工程特性对比的试验研究[J]. 武汉工程大学学报,2017,39(1):64-68.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-01-20 基金项目:福建省教育厅教育科学基金(JAT201079)作者简介:高巧玲,博士研究生,副教授。E-mail:2802019344 @qq.com*通讯作者:范功端,博士,副教授。 E-mail:fgdfz@fzu.edu.cn引文格式:高巧玲,范功端. 固体废弃物在轻质泡沫混凝土中应用的研究进展[J]. 武汉工程大学学报,2021,43(5):539-545.
更新日期/Last Update: 2021-10-27