WC–Co硬质合金摩擦磨损行为的分子动力学模拟

娄鹤子 王海滨 刘雪梅 吕皓 刘超 林亮亮 王明胜 宋晓艳

娄鹤子, 王海滨, 刘雪梅, 吕皓, 刘超, 林亮亮, 王明胜, 宋晓艳. WC–Co硬质合金摩擦磨损行为的分子动力学模拟[J]. 粉末冶金技术, 2022, 40(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2022040016
引用本文: 娄鹤子, 王海滨, 刘雪梅, 吕皓, 刘超, 林亮亮, 王明胜, 宋晓艳. WC–Co硬质合金摩擦磨损行为的分子动力学模拟[J]. 粉末冶金技术, 2022, 40(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2022040016
LOU He-zi, WANG Hai-bin, LIU Xue-mei, LÜ Hao, LIU Chao, LIN Liang-liang, WANG Ming-sheng, SONG Xiao-yan. Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides[J]. Powder Metallurgy Technology, 2022, 40(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2022040016
Citation: LOU He-zi, WANG Hai-bin, LIU Xue-mei, LÜ Hao, LIU Chao, LIN Liang-liang, WANG Ming-sheng, SONG Xiao-yan. Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides[J]. Powder Metallurgy Technology, 2022, 40(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2022040016

WC–Co硬质合金摩擦磨损行为的分子动力学模拟

doi: 10.19591/j.cnki.cn11-1974/tf.2022040016
详细信息
    通讯作者:

    E-mail: whb@bjut.edu.cn (王海滨)

    xysong@bjut.edu.cn (宋晓艳)

  • 中图分类号: TG142.71

Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides

More Information
  • 摘要: 利用分子动力学模拟研究了WC–Co硬质合金在不同条件下的摩擦过程,分析了晶粒尺寸、摩擦载荷和滑动速率等因素对硬质合金摩擦磨损行为的影响,从原子尺度揭示了硬质合金发生摩擦磨损的微观机制。结果表明,随晶粒尺寸增大,相比于晶粒转动,Co相和WC中的位错滑移逐渐在摩擦引起的塑性变形机制中起主导作用。摩擦载荷增大会导致易变形的Co粘结相被挤出表面而首先去除,通过减小晶粒尺寸可以抑制Co相的挤出–磨损机制,进而提高硬质合金的抗滑动磨损性能。滑动速率升高会降低磨损速率,主要原因是在高速滑动过程中,亚表层各相中位错的形核扩展缺乏持续的驱动应力,位错密度较低,WC不易发生断裂,Co相被挤出表面造成的磨损程度明显减轻。
  • 图  1  用于分子动力学模拟摩擦过程的多晶WC–12%Co模型建立过程

    Figure  1.  Modeling process of the polycrystalline WC–12%Co for the molecular dynamics simulation of friction process

    图  2  平均晶粒尺寸为5 nm的WC–Co硬质合金摩擦初始(a)和结束(b)的模拟组织以及摩擦结束后的剪切应变分布(c)和摩擦过程中WC晶粒通过转动协调塑性变形(d),其中原子位移矢量显示其运动方向

    Figure  2.  Simulated microstructure of the WC–Co cemented carbides with the mean grain size of 5 nm at the beginning (a) and the end (b) of the friction process, the shear strain distribution at the end of friction (c), and the plasticity coordination by WC grain rotation during the friction process (d), where the displacement vector of atoms indicates the moving direction

    图  3  平均晶粒尺寸为12 nm的WC–Co硬质合金摩擦初始(a)和结束(b)的模拟组织以及摩擦结束后的剪切应变分布(c)和摩擦过程中WC晶粒的局部转动(d)

    Figure  3.  Simulated microstructure of the WC–Co cemented carbides with the mean grain size of 12 nm at the beginning (a) and the end (b) of the friction process, the shear strain distribution at the end of friction (c), and the local rotation of WC grains during the friction process (d)

    图  4  平均晶粒尺寸为12 nm的WC–Co硬质合金在摩擦时发生WC晶粒开裂(a)和Co粘结相挤出–去除的过程(b)

    Figure  4.  Fracture of WC grains (a) and the extrusion-induced removal of the Co binder phases (b) during the friction process of the WC–Co cemented carbides with the mean grain size of 12 nm

    图  5  两种晶粒尺寸的WC–Co硬质合金在不同压力作用下磨损量随滑动距离的变化

    Figure  5.  Variation of the wear rate with the sliding distance for the WC–Co cemented carbides with two different grain sizes in the various pressure

    图  6  两种晶粒尺寸的WC–Co硬质合金在600 nN载荷下滑动摩擦不同距离时的组织结构:(a)12 nm;(b)5 nm

    Figure  6.  Microstructure of the WC–Co cemented carbides with two different grain sizes after the sliding friction at 600 nN in the various distance: (a) 12 nm; (b) 5 nm

    图  7  两种晶粒尺寸的WC–Co硬质合金在不同摩擦载荷作用下的剪切应变响应:(a)12 nm,200 nN;(b)12 nm,600 nN; (c)5 nm,200 nN;(d)5 nm,600 nN

    Figure  7.  Shear strain response of the WC–Co cemented carbides with two different grain sizes under the different frictional loads: (a) 12 nm, 200 nN; (b) 12 nm, 600 nN; (c) 5 nm, 200 nN; (d) 5 nm, 600 nN

    图  8  两种晶粒尺寸的WC–Co硬质合金在不同滑动速率作用下的磨损率(a)和损伤深度(b)变化

    Figure  8.  Variation of wear rate (a) and damage depth (b) with the sliding velocity for the WC–Co cemented carbides with two different grain sizes

    图  9  两种晶粒尺寸的WC–Co硬质合金在不同摩擦速率作用下的结构演变:(a)12 nm, 0.1 nm·ps‒1;(b)12 nm, 0.4 nm·ps‒1; (c)5 nm, 0.1 nm·ps‒1;(d)5 nm, 0.4 nm·ps‒1

    Figure  9.  Structural evolution of the WC–Co cemented carbides with two different grain sizes in the various sliding velocity: (a) 12 nm, 0.1 nm·ps‒1; (b) 12 nm, 0.4 nm·ps‒1; (c) 5 nm, 0.1 nm·ps‒1; (d) 5 nm, 0.4 nm·ps‒1

  • [1] Ghasali E, Orooji Y, Tahamtan H, et al. The effects of metallic additives on the microstructure and mechanical properties of WC–Co cermets prepared by microwave sintering. Ceram Int, 2020, 46(18): 29199 doi: 10.1016/j.ceramint.2020.08.093
    [2] Ezquerra B L, Lozada L, van den Berg H, et al. Comparison of the thermal shock resistance of WC based cemented carbides with Co and Co–Ni–Cr based binders. Int J Refract Met Hard Mater, 2018, 72: 89 doi: 10.1016/j.ijrmhm.2017.12.021
    [3] Tang Y. Research progress on preparation of cobalt-less/cobalt-free WC-based materials. Powder Metall Technol, 2021, 39(3): 280

    唐愈. 少钴/无钴WC材料制备研究进展. 粉末冶金技术, 2021, 39(3): 280
    [4] Li C, Li N, Liu X Q, et al. Effect of WC mass fraction on the microstructure and properties of Ti(C0.7N0. 3)-based cermets. Powder Metall Technol, 2018, 36(2): 100

    李朝, 李楠, 柳学全, 等. WC质量分数对Ti(C0.7N0. 3)基金属陶瓷组织和性能的影响. 粉末冶金技术, 2018, 36(2): 100
    [5] Yin S, Ekoi E J, Lupton T L, et al. Cold spraying of WC–Co–Ni coatings using porous WC–17Co powders: Formation mechanism, microstructure characterization and tribological performance. Mater Des, 2017, 126: 305 doi: 10.1016/j.matdes.2017.04.040
    [6] Derelizade K, Venturi F, Wellman R G, et al. Wear performance of graphene nano platelets incorporated WC–Co coatings deposited by hybrid high velocity oxy fuel thermal spray. Wear, 2021, 482: 203974
    [7] Erfanmanesh M, Shoja-Razavi R, Abdollah-Pour H, et al. Friction and wear behavior of laser cladded WC–Co and Ni/WC–Co deposits at high temperature. Int J Refract Met Hard Mater, 2019, 81: 137 doi: 10.1016/j.ijrmhm.2019.02.025
    [8] Geng Z, Li S, Duan D L, et al. Wear behaviour of WC–Co HVOF coatings at different temperatures in air and argon. Wear, 2015, 330: 348
    [9] Liu Y L, Zhu S Y, Yu Y, et al. Wear mechanism, tribological and anti-oxidation properties of Al doped WC–Co hardmetals under high temperature. Tribology, 2019, 39(5): 565

    刘育林, 朱圣宇, 于源, 等. 铝掺杂WC–Co基硬质合金的高温摩擦学性能、磨损机理及抗氧化性能研究. 摩擦学学报, 2019, 39(5): 565
    [10] Babu P S, Basu B, Sundararajan G. Abrasive wear behavior of detonation sprayed WC–12Co coatings: influence of decarburization and abrasive characteristics. Wear, 2010, 268(11-12): 1387 doi: 10.1016/j.wear.2010.02.013
    [11] Yin B, Zhou H D, Yi D L, et al. Microsliding wear behaviour of HVOF sprayed conventional and nanostructured WC–12Co coatings at elevated temperatures. Surf Eng, 2010, 26(6): 469 doi: 10.1179/026708410X12506870724352
    [12] Gee M G, Gant A, Roebuck B. Wear mechanisms in abrasion and erosion of WC/Co and related hardmetals. Wear, 2007, 263(1-6): 137 doi: 10.1016/j.wear.2006.12.046
    [13] Engqvist H, Högberg H, Botton G A, et al. Tribofilm formation on cemented carbides in dry sliding conformal contact. Wear, 2000, 239(2): 219 doi: 10.1016/S0043-1648(00)00315-X
    [14] Tkalich D, Kane A, Saai A, et al. Wear of cemented tungsten carbide percussive drill–bit inserts: Laboratory and field study. Wear, 2017, 386: 106
    [15] Wang D F, Ma B, Ma L C, et al. Effect of WC grain size on the microstructure and mechanical properties of HVOF-sprayed WC–10Co4Cr coatings. Powder Metall Technol, 2019, 37(6): 434

    王大锋, 马冰, 马良超, 等. WC颗粒尺寸对超音速火焰喷涂WC–10Co4Cr涂层组织及力学性能的影响. 粉末冶金技术, 2019, 37(6): 434
    [16] Bonny K, De Baets P, Perez Y, et al. Friction and wear characteristics of WC–Co cemented carbides in dry reciprocating sliding contact. Wear, 2010, 268: 1504 doi: 10.1016/j.wear.2010.02.029
    [17] Hezaveh T, Moazami-Goudarzi M, Kazemi A. Effects of GNP on the mechanical properties and sliding wear of WC–10wt% Co cemented carbide. Ceram Int, 2021, 47(13): 18020 doi: 10.1016/j.ceramint.2021.03.117
    [18] Srivastava I, Kotia A, Ghosh S K, et al. Recent advances of molecular dynamics simulations in nanotribology. J Mol Liq, 2021, 335: 116154 doi: 10.1016/j.molliq.2021.116154
    [19] Jiao Z, Song C B, Lin T S, et al. Molecular dynamics simulation of the effect of surface roughness and pore on linear friction welding between Ni and Al. Comput Mater Sci, 2011, 50(12): 3385 doi: 10.1016/j.commatsci.2011.06.033
    [20] Song C B, Lin T S, He P, et al. Molecular dynamics simulation of linear friction welding between dissimilar Ti-based alloys. Comput Mater Sci, 2014, 83: 35 doi: 10.1016/j.commatsci.2013.11.013
    [21] Xie H C, Ma Z C, Zhao H W, et al. Temperature induced nano-scratch responses of γ-TiAl alloys revealed via molecular dynamics simulation. Mater Today Commun, 2022, 30: 103072 doi: 10.1016/j.mtcomm.2021.103072
    [22] Yuan R, Li P, Chen L, et al. Effects of grafting oxygen atoms on the tribological properties of graphene: Molecular dynamics simulation and experimental analysis. Appl Surf Sci, 2020, 528: 147045 doi: 10.1016/j.apsusc.2020.147045
    [23] Lin J M, Jiang F, Wen Q L, et al. Deformation anisotropy of nano-scratching on C-plane of sapphire: A molecular dynamics study and experiment. Appl Surf Sci, 2021, 546: 149091 doi: 10.1016/j.apsusc.2021.149091
    [24] Wang G Q, Zhao G, Song J F, et al. Effect of velocity and interference depth on the tribological properties of alumina sliding with Cu: A molecular dynamics simulation. Chem Phys Lett, 2021, 775: 138669 doi: 10.1016/j.cplett.2021.138669
    [25] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell Simul Mater Sci Eng, 2009, 18(1): 015012
    [26] Abbaspour M, Akbarzadeh H. Accurate melting temperatures for Ne nanoclusters and bulk from an effective two-body potential via molecular dynamics simulations. Fluid Phase Equilib, 2014, 381: 90 doi: 10.1016/j.fluid.2014.08.019
    [27] Matuszek J, Moczala A. The modelling and simulation method in computer aided cooperation. Control and Cybern, 2010, 39(1): 117
    [28] Wu L J, Wang W, Lu J B, et al. Study of the interfacial adhesion properties of a novel self-healable siloxane polymer material via molecular dynamics simulation. Appl Surf Sci, 2022, 583: 152471 doi: 10.1016/j.apsusc.2022.152471
    [29] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1 doi: 10.1006/jcph.1995.1039
    [30] Zhang Q H, Mortazavi B, Zhuang X Y, et al. Exploring the mechanical properties of two-dimensional carbon-nitride polymer nanocomposites by molecular dynamics simulations. Compos Struct, 2022, 281: 115004 doi: 10.1016/j.compstruct.2021.115004
    [31] Gee M, Mingard K, Nunn J, et al. In situ scratch testing and abrasion simulation of WC/Co. Int J Refract Met Hard Mater, 2017, 62: 192 doi: 10.1016/j.ijrmhm.2016.06.004
    [32] Wang H B, Gee M, Qiu Q F, et al. Grain size effect on wear resistance of WC–Co cemented carbides under different tribological conditions. J Mater Sci Technol, 2019, 35(11): 2435 doi: 10.1016/j.jmst.2019.07.016
    [33] Bai L C, Srikanth N, Korznikova E A, et al. Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear, 2017, 372: 12
    [34] Hauert R. An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol Int, 2004, 37(11-12): 991 doi: 10.1016/j.triboint.2004.07.017
  • 加载中
图(9)
计量
  • 文章访问数:  641
  • HTML全文浏览量:  236
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 刊出日期:  2022-10-28

目录

    /

    返回文章
    返回