Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 199-211    DOI: 10.3785/j.issn.1006-754X.2020.00.017
优化设计     
一种被动式外骨骼机械足的结构设计及优化
任孟沂1, 曹恩国2, 赵永武1, 杨滨2, 崔宇田2
1.江南大学 机械工程学院, 江苏 无锡 214122;
2.江南大学 设计学院, 江苏 无锡 214122
Design and optimization of a passive exoskeleton mechanical foot
REN Meng-yi1, CAO En-guo2, ZHAO Yong-wu1, YANG Bin2, CUI Yu-tian2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2.School of Design, Jiangnan University, Wuxi 214122, China
 全文: PDF(2940 KB)   HTML
摘要: 被动式外骨骼可以减少行走能量消耗且不耗费电能,在军事、民用领域具有广阔的应用前景。针对现有被动式外骨骼节省的能量较少且无法适应不同行走配置等问题,提出了多级能量锁原理,并根据此原理设计了一款被动式外骨骼机械足。首先,基于多级能量锁原理,建立人体行走时支撑相储能阶段和释能阶段的人机耦合ADAMS(automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)动力学模型。然后,对被动式外骨骼机械足进行了优化:基于所建立的动力学模型分析了弹簧位置和弹簧释放角度这2个结构参数对机械足助力性能的影响规律,并结合足跟高度求得了这2个参数的最优解。最后,基于行走实验和有限元仿真分析,对被动式外骨骼机械足的强度、刚度、流畅性和舒适性等进行了优化,优化后机械足的质量约减轻500 g,安全系数达到了3.04,运行流畅性和舒适性显著提升。结果表明,释能阶段是被动式外骨骼机械足发挥作用的关键阶段;弹簧释放角度对释能阶段机械足助力性能的影响较为显著,即为影响机械足助力性能的关键参数。研究结果可为外骨骼设计提供重要参考。
关键词: 被动式外骨骼结构设计动力学优化助力性能    
Abstract: Passive exoskeleton can reduce walking energy consumption for human and doesn't require electric energy, it has a wide range of applying prospect in military and civilian fields. Aiming at the problem that existing passive exoskeleton saves less energy and cannot adapt to different walking configurations, the multi-level energy lock principle was proposed and a passive exoskeleton mechanical foot was designed according to this principle. Based on multi-level energy lock principle, human-machine coupling ADAMS (automatic dynamic analysis of mechanical systems) dynamics models during energy storing phase and energy releasing phase in support phase during human walking were established. Subsequently, the passive exoskeleton mechanical foot was optimized: based on the dynamics models, the effect of two structure parameters including the spring position and spring release angle on the assist performance of the mechanical foot was analyzed, and the optimal values of the parameters were obtained by combining the heel height. Based on walking experiment and finite element analysis, the strength, stiffness, smoothness and comfort of the passive exoskeleton mechanical foot were optimized. After the optimization, the mass of the mechanical foot was reduced 500 g, the safety factor reached 3.04, smoothness and comfort had a comprehensive improvement. The research showed that the energy releasing phase was the key phase for the exoskeleton mechanical foot to play a role; spring release angle had a significant effect on the assist performance of the mechanical foot during the energy releasing phase, and thus became a key parameter affecting the assist performance of the mechanical foot. This research will provide an important reference for exoskeleton design.
Key words: passive exoskeleton    structure design    dynamics    optimization    assist performance
收稿日期: 2018-11-08 出版日期: 2020-04-28
:  TH 16  
基金资助: 国家自然科学基金资助项目(51505191,51675232);中央高校基本科研业务费专项资金资助项目(JUSRP51729A)
通讯作者: 曹恩国(1983—),男,河北秦皇岛人,副教授,博士,从事工业设计与交互设计等研究,E-mail:ceg24942849@foxmail.com   
作者简介: 任孟沂(1994—),男,河南禹州人,硕士生,从事被动式外骨骼机械足设计研究,E-mail:1194138875@qq.com,https://orcid.org/0000-0003-4899-5564
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任孟沂
曹恩国
赵永武
杨滨
崔宇田

引用本文:

任孟沂, 曹恩国, 赵永武, 杨滨, 崔宇田. 一种被动式外骨骼机械足的结构设计及优化[J]. 工程设计学报, 2020, 27(2): 199-211.

REN Meng-yi, CAO En-guo, ZHAO Yong-wu, YANG Bin, CUI Yu-tian. Design and optimization of a passive exoskeleton mechanical foot. Chinese Journal of Engineering Design, 2020, 27(2): 199-211.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.017        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/199

[1] COLLINSS H, WIGGINM B, SAWICKIG S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522 (7555): 212-215. doi: 10.1038/nature14288
[2] DIJK WietseVAN, KOOIJ Herman VanDER. XPED2: a passive exoskeleton with artificial tendons[J]. IEEE Robotics & Automation Magazine, 2011, 21(4): 56-61. doi: 10.1109/MRA. 2014.2360309
[3] MALCOLMP, DERAVEW, GALLES. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking[J]. PLoS ONE, 2013, 8 (2): 8-10. doi: 10.1371/journal.pone. 0056137
[4] AGRAWALS K, BANALAS K, FATTAHA, et al. A gravity balancing passive exoskeleton for the human leg[C]//Proceeding of the 2006 Robotics: Science and Systems. Cambridge: MIT Press, 2007: 461-466.
[5] EDGECOMBEG D, LEGGD A. Origins and early evolution of arthropods[J]. Palaeontology, 2014, 57(Part 3): 457-468. doi: 10.1111/pala.12105
[6] 张晓峰. 澳大利亚军队的新型可穿戴外骨骼[J]. 医疗卫生装备,2016,37(11):164. ZHANGXiao-feng. New wearable exoskeleton of the Australian Army[J]. Chinese Medical Equipment Journal, 2016, 37(11): 164.
[7] MOCHONS, MCMAHONT A. Ballstic walking[J]. Journal of Biomechanics, 1980, 13(1): 49-57.
[8] MOCHONS, MCMAHONT A. Ballistic walking: an improved model[J]. Mathematical Biosciences, 1980, 52(3/4): 241-260. doi: 10.1016/0025-5564(80) 90070-X
[9] FORMAL’SKYA M. Ballistic locomotion of a biped[M]. Vienna: Springer, 1997: 191-229.
[10] OGINOM, HOSODAK, ASADAM. Learning energy efficient walking with ballistic walking[M]//Adaptive Motion of Animals & Machines. Tokyo: Springer, 2006: 155-164. doi:10.1007/4-431-31381-8_14
[11] 李杨. 助力型人体下肢外骨骼理论分析与实验研究[D].南京:南京理工大学机械工程学院,2017:45-56. LIYang. Theoretical analysis and experimental research of the power-support human lower extremity exoskeleton[D]. Nanjing: Nanjing University of Science and Technology, School of Mechanical Engineering, 2017: 45-56.
[12] AOUSTINY, FORMALSKIIA M. Walking of biped with passive exoskeleton: evaluation of energy consumption[J]. Multibody System Dynamics, 2018, 43(1): 71-96. doi: 10. 1007/s11044-017-9602-7
[13] 赵宏垚, 徐秀林. 人体膝关节的力矩参数[J]. 中国组织工程研究与临床康复,2011, 15(4):705-708. doi: 10.3969/j.issn.1673-8225.2011. 04.033 ZHAOHong-yao, XUXiu-lin. Torque parameters of human knee joint[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(4): 705-708. doi:10.3969/j.issn.1673-8225.2011.04.033
[14] 张燕, 李梵茹, 李威, 等. 基于人机耦合的下肢外骨骼动力学分析及仿真[J].应用数学和力学, 2019,40(7):780-790. doi: 10.21656/1000-0887. 390212 ZHANGYan, LIFan-ru, LIWei, et al. Dynamic analysis and simulation of the lower extremity exoskeleton based on human-machine interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790.
[15] 关鑫宇, 季林红, 王人成. 无动力储能式截瘫助行外骨骼弹簧刚度优化[J].清华大学学报(自然科学版),2017,57(11):1179-1184. doi: 10. 16511/j.cnki.qhdxxb.2017.21.035 GUANXin-yu, JILin-hong, WANGRen-cheng. Optimization of an unpowered energy-stored exoskeleton spring stiffness for spinal cord injuries[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(11): 1179-1184.
[16] 李卓. 人体下肢动力学建模与行走步态分析[D].武汉:华中科技大学机械科学与工程学院,2018:11-24. LIZhuo. A study on human lower-limb dynamics modeling and walking gait analysis[D]. Wuhan: Huazhong University of Science & Technology, School of Mechanical Science and Engineering, 2018: 11-24.
[17] APKARIANJ, NAUMANNS, CAIRNSB. A three-dimensional kinematic and dynamic model of the lower limb[J]. Journal of Biomechanics, 1989, 22(2): 143-155. doi: 10.1016/0021-9290(89) 90037-7
[18] 汤运启, 秦蕾, 罗向东. 鞋跟高度对青年女性足底压力舒适性影响的研究[J].中国皮革,2011, 40(4):106-107,111. doi:10.13536/j.cnki.issn1001-6813.2011.04.027 TANGYun-qi, QINLei, LUOXiang-dong. Research on the impact of heel on plantar pressure comfortableness of young ladies[J]. Chinese Leather, 2011, 40(4): 106-107, 111.
[1] 肖圳, 何彦, 李育锋, 吴鹏程, 刘德高, 杜江. 改进MDSMOTEPSO-SVM在汽车组合仪表分类预测中的应用[J]. 工程设计学报, 2022, 29(1): 20-27.
[2] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[3] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[4] 马维贞, 胡腾, 郑华林, 李湉. 主轴运行状态下机床刀尖点动力学行为分异特征辨识[J]. 工程设计学报, 2021, 28(6): 694-700.
[5] 杨世香, 李文强. 焚烧灰处理装备密封结构的创新设计[J]. 工程设计学报, 2021, 28(6): 679-686.
[6] 倪维宇, 张横, 姚胜卫. 基于多工况的汽车座椅骨架轻量化设计[J]. 工程设计学报, 2021, 28(6): 729-736.
[7] 赵波, 赵海鸣, 刘晨, 胡刚. 悬立式深海钴结壳采矿头的参数化设计与优化[J]. 工程设计学报, 2021, 28(5): 559-568.
[8] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[9] 高翔, 王林军, 杜义贤, 李响, 徐柳. 基于云模型人工鱼群算法的模糊优化设计[J]. 工程设计学报, 2021, 28(4): 433-442.
[10] 叶锦涛, 刘凤丽, 郝永平, 刘双杰, 郭梦辉, 冯卓航. 一种超低空飞行的仿生扑翼飞行器的设计及分析[J]. 工程设计学报, 2021, 28(4): 473-479.
[11] 曹恩国, 王刚, 王琨, 高阳. 基于弹性装置驱动的外骨骼助行效能评价[J]. 工程设计学报, 2021, 28(4): 480-488.
[12] 刘晓瑜, 田颖, 张明路. 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28(4): 389-398.
[13] 张泽, 陈勇, 李光鑫, 雷勇敢, 阮鸥, 王再宙. 电动汽车变速器电液控制系统总成设计及结构优化[J]. 工程设计学报, 2021, 28(3): 335-343.
[14] 白杨溪, 陈洪月, 陈洪岩, 王鑫, 李建刚. 基于滚筒载荷的采煤机滑靴振动分析及实验验证[J]. 工程设计学报, 2021, 28(3): 358-366.
[15] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.