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Stabilization and Controllability of a Class of Nonholonomic Systems *
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Abstract: In this note, the stabilization and controllability of a class of nonholonomic control systems are considered.
First of all, it is shown that even though in general a smooth state feedback control, which stabilizes the system, does exist' !},
the existence depends on the initial position of the system. It does exist except a very limited measure-zero set. Then we show
that the systems are globally controllable by piecewise smooth controls. As a corollary, the systems are finite time stabilizable by

piecewise smooth control. The proofs are constructive so the controls are provided precisely .
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In the last decade, nonholonomic control systems re-
ceived a lot of attention. Becanse many practical engi-
neering problems, such as moving robot, space craft
etc., can be described as this kind of control sys-
tems'?! . Since in general a nonholonomic control system
can not be stabilized by smooth state feedback control,
non-smooth and discontinuous controls are investigat-
ed3-5)

The following nonholonomic system is the well-known
Brockett integrator. It was shown in [ 1] that the system
is locally controllable and it can not be stabilized by
smooth state feedback control.

%) = Uy,

g2 = U2, (1)

X3 = XUy — XilUjp.
This system has been widely discussed. Many different
control techniques have been used to stabilize it. A re-
cent research is done by using non-regular linearization
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techrliquc[6].
This note considers a class of nonholonomic systems
described as
{:'vzuT,xGR,uGR, 2)
zZ ==z Ju,
where J is a skew-symmetric and invertible matrix. For
J to be nonsingular n should be even. Note that system
(1) is a particular case of (2).
1 Feedback stabilization
To begin with, we propose a quadratic Lyapunov
function as

H(x,z) = Jz‘(xTx + $(2)%),

where #(z) is smooth and strictly monotone with ¢(0)
= 0. Then
H=x"u + $(2)¥(2)x"Ju = 2T (1 +8(2)¢ (2) Nu.
(3)
If we assume
Al P =- 1
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Note that system (1) satisfies this assumption. Then
it is very natural to choose a control as
u=-(I-¢()¢(z)])x. 4)
Then
H=-[1+@¢E)]=l?<0,
which implies the following

Proposition 1  Assume Al ). Then there exists a
smooth state feedback such that the closed-loop system
of (2) is globally stable.

Proposition 1 is not very interesting because we are
more interested in the asymptotical stability. Moreover,
the assumption Al) is too restrictive. But motivated by
the control form (4), we may propose the following
control

u=-(I+8&2)JNx, (5)
where £(z) is a smooth function of z. Using this control
we can find the following result, which shows that in

most cases ( precisely, for the initial state on a generic

subset of the state space, R* x R\ {(0,z)}) system
(2) can still be stabilized by smooth state feedback.
Theorem 1 If the initial condition for x is not zero,
i.e., x(0) % 0, system (2) can be stabilized by
smooth state feedback control.
Proof Using (5), it is seen that

L lal? =22+ 6w = - 202112
Denote Xy = || xo || 2, then
| 1% = Xpe 2. (6)
Now we have
iz=—x"Jx - x8(2)Ix = - &(z) I xIl%2 (7)
It follows from (6),(7) that
zZ = - E(Z)Xoﬁ_h,
or
_dz_ _ J -2t
E(Z) = - Xoe d:.

Denote {z) = Jg(dj)‘ Then we have

O(2) - B(z) = e -1, (@®)
It follows that
lim®(2) = @(z) - 5. ®

Now it is clear that if ®(z) satisfies the following C1)
~ C3), the closed-loop system is asymptotically stable,
i.e., the system (2) can be stabilized by control (5).

Vol.19
Cl1) ©(0) = 0;
C2) ®(z)—0 implies z — 0;
X,
Cc3) ®(zp) — 7" = 0. (10)

A feasible function, satisfying C1) ~C3), is

X,
@(z) = pIn(1+1 z [), with #=m' 2p£0.

(11)
Then

, z < 0.
z -1

It follows that

2(1 + 2)In(1 +1 z 1)
,z=0
Xo

¢(z) = 2(z - Din(1 +1 z 1) (12)
< 0.

Xo ' E
It is easy to find that from (5) the constraint zp s« 0 can
be removed. In fact, zy = Oimplies £(z) = 0. Then the
corresponding control (5) does stabilize the system.

To know that control (5) with (12) is a smooth con-
trol we have only to show that along each trajectory of
the closed-loop system (4) will take only one branch.
=0
then z(t) =0, Yt =0, and If zp < Othen z(¢) < O,
Vi>O0.

Ifzo = O, then £(z5) = Oand z(t) = 0, V¥ z.

If zg > O, then £(zy) > 0, z is decreasing. Since
limz = 0, andz < O, then z(¢) > 0, V¢.

o

If zp < O, then £(zp) < O, z is increasing. A similar

This fact derives from the following claim: If z,

argument shows that z(t) < 0, Y .

From (9), the stability is not robust. It depends on
the initial measurement Zo and X, . Intuitively, we may
replace Z, and Xy by Z and X respectively. It simply
means we adjust the initial condition from time to time.
It is indeed true.

Proposition 2 If the initial condition x(0) = 0,
system (2) can be stabilized by smooth state feedback
control (5) with

2(1 + DIn(1 41z 1)

K 23>0,

£(z) = {2z = DIn(1 4] =z ) (13)
E 2 < 0,
0, Z=0.
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Proof Since || x |2 > 0,V ¢, similar to the proof
of Theorem 1 we can show that the control is smooth be-
cause zy > 0, zg = Oand 2y < 0imply z(t) > 0,V ¢,
z(t) = 0,y¥tand z(t) < 0,V t respectively. We as-
sume zog > 0(zg = 0 is obvious, and zo < O can be
proved similarly) . Then from (7)

214z ln l+z fx 2= -2(1+2)In(1+2).
X X

The solution for this ODE is In(1 + z) = In(1 +
zo)e'2‘.

It is ready to see that ‘l_l.rgz(t) = 0.

For the stabilization of system (2) with non-smooth
control in the case xp = 0, it will be solved as a
byproduct of the investigation of the controllability .

2 Controllability

It is known that system (1) is locally controllablet! .
In this section we will show that (2) is globally control-
lable in a very strong sense: a system is called globally
controllable if given any starting position xo and destina-
tion x, there exist piece-wise smooth state-feedback con-
trols, such that the trajectory of the closed-loop system
satisfies x(0) = xgand x(T) = x, for some T > 0.

We will show that system (2) is globally controllable
by constructing the required controls.

Theorem 2 System (2) is globally controllable by
piece-wise smooth state feedback control.

Proof Given any (#g,20),(%,,2.) € R**!, we will
construct controls, which drives the system from (x,

zo) to (x,,z,).

Case 1 x, % 0. The controls will be designed in 4
steps.
Step 1 Construct u, as

u, = V2%, - %9, 0< t < 1. (14)
Then x(t) = 2o+ (V2x, — %) ¢, %12 = (1) =2x,.
In the following, for notational ease we will use x, for
x(t), etc.
2 =[x+ (V2x, = 20)t 1" (2%, ~ x9) = V2x0Jx,.
Then z(t) = V2xoJx.t + 29,21 = V220" Jx. + zg.
Step 2 Construct u; as

: = ,ul]'lx, 1 <t<3.

(15)
i = ,ul_]'lx. (16)

Hence

1202 = 2270 % = 0.
Using this fact, we have

. 2, — 2]

zZ = xT————2 ” - ||2x =2z, - 2p.

Then z(t) = z; + (z, —z;)(¢t - 1), and z3 = z; + 2(z,

Ld Zl).
According to (16), we have

x(t) = e"lfl("l)xl and x3 = «/562"11—191:,. 17)
Step 3  Construct u; as

u3 = (Jg -1zx3,3 <t <4 (18)
Then X = (J?_Z_ - 1)x3

Hence

-1

x(t)=x3+(%2—l)x3(t—3) and x4=Qx3 =l x,.

2
(19)
Using (19), we have
Z = [1 + Jg - 1)(t - 3)].27;]273 = 0.
Then 24 = 23 = 21 + 2(2, - 21).
Step 4 Construct u4 as
Ug = — Tlcx_ lT;]'lx: == ,uz]‘lx, 4 <t <5
(20)
Note fhﬂt#2 = 2,&1 Then
X =— ]'lx. (21)

Hence
S a2 = - 24Ty
dt X =-2x 2 ] x = 0.

Using this fact, we have

. zZ, — 2)
Z =—me—5x =-(z, - z).
€

Then z(t) = 24— (2, - x,) (¢t = 4), and z5 = 2z, + 2(z,
-z)-(z - =) = z.
According to (21), we have
x(t) = e"‘zJ-l("4)x4 and x5 = e"‘zl-le2"11-lx, = .
(22)
We reach the destination.
Case 2

Choose an auxiliary %, 5« O to replace x,. Using Step 1

x,=0.

to Step 4 we have: x5 = %, and zs = z, . Then we set
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us = — %,. (23)
Based on the above analysis, we can easily find that
26 = 0 = x,and zg = 25 = z,.

Remark 1 In the above case 2, if xp 5« 0 we can
simply choose the following controls to reach the desti-
nation:

Step 1 Choose

2, — 20

Y E
Then x, = e"’-lxo and z; = z,.
Step 2 Choose
u2=—x1,1<ts2. (25)

Jl's: = ux, 0t < 1. (24)

Thenx; = 0 = x,and z; = z; = z,.

Setting x, = O and z, = 0, we have

Corollary 1 System (2) is finite time stabilizable
by piece-wise smooth state-feedback controls.

Remark 2 Combining the techniques used in this
section and the last section we may also stabilize system
(2) for xg = Oin two steps. Fist we use constant control

u;, = ¢ 5 0. (26)
Then x(t) = ct and it is easy to see that z(t) = z . In
next step we use u, as (5) with £(z) as in (12) or
(13) . But the overall control can never be even continu-
ous. For example, we can find some time ¢ such that u,
= uy. i.e.,

- (I + 8(20)J Ve = e,

then — 1/t is an eigenvalue of (/ + £(z0)J™!). But it is
easy to see that this matrix can not have a real eigenval-
ue, which leads to a contradiction.

Remark 3 In fact the condition J is invertible in
this note can be removed. As long as J »« O we can al-
ways find a nonsingular matrix M such that after a con-
gruent transformation we have

Jo 0)
0 o’
where Jopis a £ x k nonsingular matrix for some k < n.

MUM:(

Then we may make a coordinate transformation x =
My and set the control as u = Mv . Lety = (y',4?)
with y' € IR¥. Then system (2) becomes

gl = ol 2 = o2,
{Z' = (y")TJo0l.
Since the decoupled sub-system y* = v? is trivially con-
trollable, all the conclusions in the note still hold true by

(27)

applying the techniques to the sub-system

yl — ’l)l,
{z' = (y")TJpo'. (28)

3 Conclusion

In this paper a class of nonholonomic control systems
were considered. The systems described by (2) are a
generalization of the famous example (1), introduced in
[1]. Even though in general system (1) is not smooth
state feedback stabilizable, we proved that as xp s« 0
there exists a smooth state feedback control, which sta-
bilized the system. Then the system (2) was shown to
be globally controllable by piecewise smooth control. A
universal control law was proposed to drive the system
from any initial position to any destination. As a corol-
lary, it was also shown that the system (2) is finite time
stabilizable by the piecewise smooth control, which is
better than the exponential stabilization.
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