首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的基于粒子群和模拟退火的聚类算法
引用本文:董金新,亓民勇. 一种新的基于粒子群和模拟退火的聚类算法[J]. 计算机工程与应用, 2009, 45(35): 139-141. DOI: 10.3778/j.issn.1002-8331.2009.35.042
作者姓名:董金新  亓民勇
作者单位:聊城大学计算机学院,山东聊城,252059;聊城大学计算机学院,山东聊城,252059
基金项目:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60874075):聊城学科研基金 
摘    要:提出了一种新的基于粒子群和模拟退火的聚类算法。每个粒子作为聚类问题的一个可行解组成粒子群,粒子的位置由聚类中心向量表示。为避免粒子群陷入局部最优解,结合聚类问题的实际特点,提出了利用模拟退火的概率突跳性的两个解决方案。实验结果表明,新算法增强了全空间的搜索能力,性能优于粒子群算法和传统的K-means算法,具有较好的收敛性,是一种有效的聚类算法。

关 键 词:粒子群优化  模拟退火  聚类
收稿时间:2009-08-05
修稿时间:2009-10-9 

New clustering algorithm based on Particle Swarm Optimization and simulated annealing
DONG Jin-xin,QI Min-yong. New clustering algorithm based on Particle Swarm Optimization and simulated annealing[J]. Computer Engineering and Applications, 2009, 45(35): 139-141. DOI: 10.3778/j.issn.1002-8331.2009.35.042
Authors:DONG Jin-xin  QI Min-yong
Affiliation:College of Computer Science,Liaocheng University,Liaocheng,Shandong 252059,China
Abstract:A new clustering algorithm is proposed based on particle swarm optimization and simulated annealing.The particle swarm is composed of particles,and each particle is a possible solution of the clustering problem,the position of the particle is represented by cluster center vector.To escape from local optimum,two solutions are proposed using the probabilistic jumping property of simulated annealing algorithm combined with the clustering problem.The experimental results on different datasets show that the new algorithm has enhanced the global search ability,has better performance than particle swarm optimization and K-means algorithm,has better global convergence,and it is an effective clustering algorithm.
Keywords:particle swarm optimization  simulated annealing  clustering
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号