首页 | 官方网站   微博 | 高级检索  
     


Flexible and Wire‐Shaped Micro‐Supercapacitor Based on Ni(OH)2‐Nanowire and Ordered Mesoporous Carbon Electrodes
Authors:Xiaoli Dong  Ziyang Guo  Yanfang Song  Mengyan Hou  Jianqiang Wang  Yonggang Wang  Yongyao Xia
Affiliation:1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, China;2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China
Abstract:Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm–1 (or 35.67 mF cm–2) and a high specific energy density of 0.01 mWh cm–2 (or 2.16 mWh cm–3), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomo­graphy technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号