首页 | 本学科首页   官方微博 | 高级检索  
     

利用模糊推理的证据理论信息融合算法
引用本文:王云飞,李辉,李云彬. 利用模糊推理的证据理论信息融合算法[J]. 计算机工程与应用, 2010, 46(36): 144-146. DOI: 10.3778/j.issn.1002-8331.2010.36.039
作者姓名:王云飞  李辉  李云彬
作者单位:西北工业大学 电子信息学院,西安 710129
基金项目:中国航天科技集团公司航天科技创新基金,西北工业大学种子基金
摘    要:证据理论具有比较强的理论基础,能处理随机性或模糊性所导致的不确定性。但证据理论应用中基本概率分配函数(mass函数)难以确定,针对这一问题,提出了一种基于模糊推理的证据理论信息融合算法。该方法利用模糊理论中的高斯隶属度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可信度转化成基本概率赋值函数即mass函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获得的结果比直接结果具有更高的精度和可靠性。

关 键 词:模糊信息  证据理论  信息融合  隶属函数  
收稿时间:2010-06-22
修稿时间:2010-8-30 

Evidence theory information fusion algorithm based on fuzzy reasoning
WANG Yun-fei,LI Hui,LI Yun-bin. Evidence theory information fusion algorithm based on fuzzy reasoning[J]. Computer Engineering and Applications, 2010, 46(36): 144-146. DOI: 10.3778/j.issn.1002-8331.2010.36.039
Authors:WANG Yun-fei  LI Hui  LI Yun-bin
Affiliation:School of Electronic Information,Northwestern Polytechnical University,Xi’an 710129,China
Abstract:Evidence theory has a relatively strong theoretical basis which can deal with randomness or ambiguity caused by uncertainty.However,application of evidence theory is difficult to determine the mass function.To solve this problemt,his pa-per proposes an evidence theory information fusion algorithm based on fuzzy set.The method uses fuzzy theory in the Gauss-ian fuzzy membership function to obtain a probable characteristic under observation likelihood function,and the resulting like-lihood function gets the credibility of the information provided by the sensors.Then the reliability of each sensor is changed to a mass function.Finally,multi-sensor information is combined by using evidence theory.Simulation of target recognition shows that the results obtained have higher accuracy and reliability.
Keywords:fuzzy information  evidence theory  information fusion  membership function
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号