首页 | 本学科首页   官方微博 | 高级检索  
     

费托合成催化剂失活动力学模型的研究进展
引用本文:李为真. 费托合成催化剂失活动力学模型的研究进展[J]. 化工进展, 2019, 38(5): 2347-2352. DOI: 10.16085/j.issn.1000-6613.2018-1412
作者姓名:李为真
作者单位:北京低碳清洁能源研究院,北京,102211
基金项目:国家重点研发计划(2017YFB0602500)
摘    要:费托合成催化剂由于自身的化学性质在反应中不可避免会发生失活,为了保证生产的连续稳定,需要建立费托合成催化剂失活的动力学模型来预测催化剂的活性变化,并及时对失活的催化剂进行置换和再生。本文论述了费托合成失活动力学模型的研究进展,讨论了通用型失活动力学模型,根据机理建立的失活动力学模型的特点。通用型失活动力学模型与催化剂种类和失活原因没有直接关联,包括线性模型、简单幂律模型、通用幂律模型、韦伯分布模型、S型分布模型。根据机理建立的失活动力学模型则与催化剂种类和失活发生的机理相关,包括硫中毒失活模型、烧结失活模型、表面氧化失活模型等。通用型失活动力学模型准确性好、容易建立,但比较粗略,适用于费托合成的生产管理、过程模拟。根据机理建立的失活动力学模型建立过程复杂,只适用于特定催化剂,但能够从中研究催化剂的失活机理。费托合成失活动力学模型未来的发展趋势是融合两类模型,从失活机理的角度理解通用型失活动力学模型里参数的含义。

关 键 词:费托合成  催化剂  失活  动力学模型
收稿时间:2018-07-10

Progress on the catalyst deactivation model for Fischer-Tropsch synthesis
Weizhen LI. Progress on the catalyst deactivation model for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2347-2352. DOI: 10.16085/j.issn.1000-6613.2018-1412
Authors:Weizhen LI
Affiliation:National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
Abstract:Deactivation is inevitable for Fischer-Tropsch catalysts because of their intrinsic chemical properties. To keep the production stable and consistent, deactivation models should be established in order to replace and regenerate the deactivated catalyst in time. This article summarized the research progress on the catalyst deactivation model for Fischer-Tropsch synthesis. The characteristics of general deactivation model and the reaction mechanism model were discussed. The general deactivation model has no direct correlation to the catalyst type and deactivation mechanism, and consists of linear model, simple power law model, general power law model, Weibull distribution model, and sigmoidal pattern model. On the other hand, the reaction mechanism based deactivation model has correlation to the catalyst type and deactivation cause, which includes sulfur poisoning model, sintering model, surface oxidation model, etc. General deactivation model is accurate and easy to establish, but is relatively rough, which is suitable for production management and process simulation. The reaction mechanism based model is complicated to establish and can only be applied to specific catalyst. The future development of Fischer-Tropsch deactivation model is to combine the two kinds of models together and to investigate the meaning of the parameters in general deactivation models through the view of deactivation mechanism.
Keywords:Fischer-Tropsch synthesis  catalyst  deactivation  kinetic modeling  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号