首页 | 本学科首页   官方微博 | 高级检索  
     

结合鲸鱼优化算法的自适应密度峰值聚类算法
引用本文:王芙银,张德生,张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102. DOI: 10.3778/j.issn.1002-8331.2007-0205
作者姓名:王芙银  张德生  张晓
作者单位:西安理工大学 理学院,西安 710054
摘    要:针对密度峰值聚类算法(DPC)的聚类结果对截断距离dc的取值较为敏感、手动选取聚类中心存在着一定主观性的问题,提出了一种结合鲸鱼优化算法的自适应密度峰值聚类算法(WOA-DPC).利用加权的局部密度和相对距离乘积的斜率变化趋势实现聚类中心的自动选择,避免了手动选取导致的聚类中心少选或多选的情况;考虑到合理的截断距离dc...

关 键 词:密度峰值聚类算法  鲸鱼优化算法  聚类中心自适应  截断距离

Adaptive Density Peaks Clustering Algorithm Combining with Whale Optimization Algorithm
WANG Fuyin,ZHANG Desheng,ZHANG Xiao. Adaptive Density Peaks Clustering Algorithm Combining with Whale Optimization Algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102. DOI: 10.3778/j.issn.1002-8331.2007-0205
Authors:WANG Fuyin  ZHANG Desheng  ZHANG Xiao
Affiliation:College of Science, Xi’an University of Technology, Xi’an 710054, China
Abstract:To solve these problems of the Density Peaks Clustering algorithm(DPC) that the clustering results are more sensitive to the cutoff distance [dc], as well as the clustering centers selected manually are subjective, an adaptive Density Peaks Clustering algorithm combining with Whale Optimization Algorithm(WOA-DPC) is proposed. The selection of clustering center is automatically realized according to the slope variation trend of the weighted product of the local density and the relative distance, which avoids the situation that the number of the clustering centers selected by manual operation is larger or smaller. The reasonable cutoff distance [dc] is an important factor to improve the clustering result of DPC. An optimization problem with the objective function being the ACC index is established. The objective function is optimized by using the effective optimization ability of the Whale Optimization Algorithm(WOA) to find the best cutoff distance [dc]. The proposed WOA-DPC is tested with the artifical datasets and the real datasets on UCI. Experimental results show that the proposed algorithm outperforms DPC, DBSCAN and K-Means in terms of FMI, ARI and AMI indicators with better clustering performance.
Keywords:density peak clustering algorithm  whale optimization algorithm  cluster center adaptive  cutoff distance  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号