首页 | 官方网站   微博 | 高级检索  
     


Synthesis,characterization, and drug‐release behavior of amphiphilic quaternary ammonium chitosan derivatives
Authors:Aidi Zhang  Derun Ding  Jicun Ren  Xiangli Zhu  Youhong Yao
Affiliation:1. College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China;2. College of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, People's Republic of China
Abstract:A new type of amphiphilic quaternary ammonium chitosan derivative, 2‐N‐carboxymethyl‐6‐O‐diethylaminoethyl chitosan (DEAE–CMC), was synthesized through a two‐step Schiff base reaction process and applied to drug delivery. In the first step, benzaldehyde was used as a protective agent for the incorporation of diethylaminoethyl groups to form the intermediate (6‐O‐diethylaminoethyl chitosan). On the other hand, NaBH4 was used as a reducing agent to reduce the Schiff base, which was generated by glyoxylic acid, for the further incorporation of carboxymethyl groups to produce DEAE–CMC. The structure, thermal properties, surface morphology, and diameter distribution of the resulting chitosan graft copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, thermogravimetric analysis, differential scanning calorimetry, X‐ray powder diffraction, scanning electron microscopy, and laser particle size analysis. Benefiting from the amphiphilic structure, DEAE–CMC was able to be formed into microspheres in aqueous solution with an average diameter of 4.52 ± 1.21 μm. An in vitro evaluation of these microspheres demonstrated their efficient controlled release behavior of a drug. The accumulated release ratio of vitamin B12 loaded DEAE–CMC microspheres were up to 93%, and the duration was up to 15 h. The grafted polymers of DEAE–CMC were found to be blood‐compatible, and no cytotoxic effect was shown in human SiHa cells in an MTT 3‐(4, 5‐dimethyl‐thiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] cytotoxicity assay. These results indicate that the DEAE–CMC microspheres could be used as safe, promising drug‐delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39890.
Keywords:biomaterials  biomedical applications  drug‐delivery systems  hydrophilic polymers  polysaccharides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号