首页 | 官方网站   微博 | 高级检索  
     

面向空间引力波探测的低噪声平衡零拍探测系统研究(特邀)
引用本文:王炜杰,李番,李健博,鞠明健,郑立昂,田宇航,尹王保,田龙,郑耀辉.面向空间引力波探测的低噪声平衡零拍探测系统研究(特邀)[J].红外与激光工程,2022,51(6):20220300-1-20220300-9.
作者姓名:王炜杰  李番  李健博  鞠明健  郑立昂  田宇航  尹王保  田龙  郑耀辉
作者单位:1.山西大学光电研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
基金项目:国家重点研发计划(2020YFC2200402);国家自然科学基金( 62027821, 62035015, 12174234, 11874250);山西省重点研发计划(202102150101003, 201903D111001);山西省三晋学者特聘教授项目
摘    要:空间引力波探测频段位于0.1 mHz~1 Hz范围内,在该频段内包含了更大特征质量和尺度的引力波波源信息。目前,基于不同尺寸及空间轨道的大型激光干涉空间引力波探测计划已经逐步实施,其中在干涉仪的激光光源系统中,需要抑制激光强度噪声及频率噪声等,光电探测作为激光噪声表征及抑制的第一级器件,其性能将直接影响激光噪声抑制效果。通过选定低噪声芯片、高稳定偏压系统的基础上,采用自减电路及跨阻放大电路进行整体电路设计;在电磁屏蔽、低温漂系数元件、低噪声供电以及主动温控等技术手段实现了高增益低噪声平衡零拍探测系统的研制;结合快速傅里叶变换法以及对数轴功率谱密度算法对其增益、带宽等性能进行评估测试,并进一步对激光的强度噪声在0.05 mHz~1 Hz频段进行探测表征。实验结果表明:所研发平衡零拍探测电子学噪声谱密度在1 mHz~1 Hz的频率范围内在3.6×10?5 V/Hz1/2以下,小于空间引力波探测对激光光源噪声要求;进一步当入射光功率为400 μW时,测量得到平衡零拍探测系统在0.1 mHz~1 Hz的频率范围内增益在20 dB以上;激光强度噪声谱密度在1 mHz处为3.6×10?2 V/Hz1/2,实现低噪声光电探测及激光强度噪声表征,为空间引力波探测中激光强度噪声表征及抑制等方面提供关键器件支撑。

关 键 词:空间引力波探测    平衡零拍探测    真空噪声    对数轴谱密度算法
收稿时间:2022-02-20

Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)
Affiliation:1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China2.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China3.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract:The space-based gravitational wave detection frequency band is located in the range of 0.1 mHz-1 Hz, because the gravitational wave source information with larger characteristic quality and scale is contained in the aforementioned frequency band. At present, large-scale laser interferometer space-based gravitational wave detection projects based on different sizes and space orbits have been gradually implemented. It should be emphasized that the laser intensity noise and frequency noise should be suppressed in the laser source system of the interferometer. Moreover, as the first level device of laser noise characterization and suppression, the performance of photoelectric detection will directly affect the effect of laser noise suppression. First of all, on the basis of selecting low noise chip and high stable bias system, the whole circuit was designed by self-reducing circuit and transimpedance-amplifying circuit. In addition, in electromagnetic shielding, low temperature drift factor element, low noise power supply and active temperature control and other technical means, realize the development of high gain and low noise balanced homodyne detection system. Finally, the gain and bandwidth of the photodetector were evaluated and tested by combining the fast Fourier transform method and the number line power spectral density algorithm, and the intensity noise of the laser was detected and characterized in the 0.05 mHz-1 Hz band by using the detector. The experimental results show that the electronic noise spectral density of the balanced homodyne detector is less than 3.6×10?5 V/ Hz1/2 in the frequency range of 1 mHz-1 Hz, which is less than the noise requirement of the laser source for space-based gravitational wave detection. When the incident light power is 400 μW, the gain of the balanced homodyne detection system is measured to be more than 40 dB in the frequency range of 0.1 mHz-1 Hz. What’s more, the spectral density of laser intensity noise is 3.6×10?2 V/ Hz1/2 at 1 mHz. Low noise photoelectric detection and laser intensity noise characterization are achieved, which provide key device support for laser intensity noise characterization and suppression in space-based gravitational wave detection.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号