首页 | 官方网站   微博 | 高级检索  
     

小型化复合孔径双波段观瞄系统设计
引用本文:李晓蕾,高明.小型化复合孔径双波段观瞄系统设计[J].红外与激光工程,2022,51(4):20210549-1-20210549-12.
作者姓名:李晓蕾  高明
作者单位:西安工业大学 兵器科学与技术学院,陕西 西安 710021
基金项目:陆军装备“十三五”预研项目(301XXX102);微光夜视技术重点实验室基金(61424120503xx)
摘    要:针对单一波段生物复眼孔径小、视距短、接收光谱窄等不足,设计了一种大孔径接收可见光、中波红外仿生复眼光学系统。由于集成光路体积大,子眼系统选择共光路的结构形式。基于入射窗和出射窗的物像共轭关系建立了子眼系统拼接的几何模型。通过设计中继转像系统,将子眼阵列所成的曲面像转换成平面像,解决了平面探测器接收曲面像的问题。整个复眼由37个子眼构成,子眼的焦距为30 mm,视场为20°,入瞳为10 mm,相邻子眼光轴夹角为16°,合并后的视场为116°。相对微透镜阵列式的复眼系统而言,该曲面仿生复眼系统探测距离更远、获取目标信息更全。子眼系统和接收系统的成像质量良好,在?40~+60 ℃温度范围内无热差影响。

关 键 词:仿生复眼系统    透镜阵列    视场拼接    双波段
收稿时间:2021-08-06

Design of miniaturized dual-band observation system with composite aperture
Affiliation:School of Ordnance Science and Technology, Xi'an Technological University, Xi'an 710021, China
Abstract:Aiming at the shortcomings of single-band biological compound eye, such as small aperture, short line-of-sight and narrow receiving spectrum, a bionic compound eye optical system with large aperture for receiving visible light and medium-wave infrared was designed. In view of the large volume of the integrated optical path, the common optical path structure was selected for the sub-eye system. Based on the conjugate relation between object and image of entrance window and exit window, the geometric model of sub-eye system mosaic was established. By designing relay image transfer system, the curved image formed by sub-eye array was converted into planar image, which solved the problem of planar detector receiving curved image. The whole compound eye consists of 37 sub-eyes, with a focal length of 30 mm, a field of view of 20°, an entrance pupil of 10 mm, an included angle between the axes of adjacent sub-eyes of 16°, and a combined field of view of 116°. Compared with microlens array compound eye system, this curved bionic compound eye system has longer detection distance and more complete target information. The imaging quality of sub-eye system and receiving system is good, and there is no thermal difference in the temperature range of ?40-+60 ℃.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号