
 Vol.14, No.10 ©2003 Journal of Software 软 件 学 报 1000-9825/2003/14(10)1706

浓缩数据立方中约束立方梯度的挖掘
∗

冯玉才, 刘玉葆+, 冯剑琳

(华中科技大学 计算机科学技术学院,湖北 武汉 430074)

Mining Constrained Cube Gradient for the Condensed Data Cube

FENG Yu-Cai, LIU Yu-Bao+, FENG Jian-Lin

(College of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China)

+ Corresponding author: Phn: 86-27-87522500 ext 8004, E-mail: yubliu@263.net

http://www.dm2.com.cn

Received 2002-06-18; Accepted 2002-12-04

Feng YC, Liu YB, Feng JL. Mining constrained cube gradient for the condensed data cube. Journal of
Software, 2003,14(10):1706~1716.
http://www.jos.org.cn/1000-9825/14/1706.htm

Abstract: Constrained cube gradient mining is an important mining task and its goal is to extract the pairs of
gradient-probe cell satisfy the gradient constraint from a data cube. However, previous work are explored for a
general data cube. In this paper, the problem of the mining constrained cube gradient for a condensed cube is
studied. An algorithm named as eLiveSet for the problem is developed through the extension of the existing
efficient mining algorithm LiveSet-driven. The experimental results show that the algorithm is more effective than
the existing algorithm on the performance of mining constrained cube gradient.
Key words: data cube; cube gradient; condensed cube; cube computation; association rule

摘 要: 约束立方梯度挖掘是一项重要的挖掘任务,其主要目的是从数据立方中挖掘出满足梯度约束的梯度-
探测元组对.然而,现有的研究都是基于一般数据立方的.研究了浓缩数据立方中约束数据立方梯度的挖掘问题.
通过扩展LiveSet驱动算法,提出了一个 eLiveSet算法.测试表明,该算法在立方梯度挖掘效率上比现有算法要高.
关键词: 数据立方;立方梯度;浓缩数据立方;数据立方计算;关联规则
中图法分类号: TP311 文献标识码: A

1 Introduction

Recently, there have been growing interests in multidimensional analysis of relational databases, transactional

∗ Supported by the e-Government Project of the Ministry of Science and Technology of China under Grant No.2001BA110B01 (国

家科技部电子政务项目)
FENG Yu-Cai is a professor and doctoral supervisor at the College of Computer Science, the Huazhong University of Science and

Technology. His research areas are the database and the information system. LIU Yu-Bao is a Ph.D. candidate at the College at the
Computer Science, the Huazhong University of Science and Technology. His research interests are the data mining and the data
warehouse. FENG Jian-Lin received his Ph.D. degree from the College of Computer Science, the Huazhong University of Science and
Technology. His research interests are the database and the data warehouse.

 冯玉才 等:浓缩数据立方中约束立方梯度的挖掘 1707

databases, and data warehouses[1,2]. Most of such analyses involve data cube-based summary or transaction-based
association analysis. However, many interesting applications may need to analyze the changes of measures in
multidimensional space. For example, one may want to ask what the changes of the average house price in the
Vancouver area in year 2000 are compared against 1999, and the answer could be “the average price for those sold
to professionals in the West End went down by 20%, while those sold to business people in Metrotown went up by
10%, etc.” Expressions such as “professionals in the West End” correspond to cells in data cube and describe sectors
of the business modeled by the data cube. The problem of mining changes of measures in a multidimensional space
was first proposed by Imielinski, et al. as a cubegrade problem[3], which can be viewed as a generalization of
association rules[4] and data cubes[5]. An example of a typical association rule states that, 23% of supermarket
transactions that buy bread and butter also buy cereal (that percentage is called confidence) and that 0.6% of all
transactions buy bread and butter (this is called support). This rule can also be interpreted as saying that the count of
transactions buying bread and butter drops to 23% of the original when the restricted to (drill-down) the transactions
buying bread, butter and cereal. This interpretation leads to a much more general view of association rules, when
support (count) is replaced by an arbitrary aggregate measure. This leads to the concept of cubegrade that studies
how changes of measures (aggregates) of interest are associated with the changes in the underlying characteristics
of sectors, where the changes in sector characteristics are expressed in terms of dimensions of the cube and are
limited to specialization (drill-down), generalization (roll-up), and mutation (a change in one of the cube’s
dimensions). Cubegrades are significantly more expressive than association rules in capturing trends and patterns in
data because they use arbitrary aggregate measures, not just COUNT, as association rules do. Typically, cubegrades
can express the following kinds of questions on the data:

Q1: How is the average age of buyers of salsa affected by buying soda as well? Example answer: Drops by
10% from 26 to 24.

Q2: How is the average amount of milk bought affected by customer age among buyers of cereals? Example
answer: Rise by 20% for customers younger than 40 and drops by 5% among customers older than 40.

Cubegrades can also support sophisticated “what if” analysis etc. and be useful in marketing, sales analysis,
and other typical data mining applications in business[3]. The constrained cube gradient mining[6] represents a
confined but interesting version of the cubegrade problem. The goal of constrained cube gradient mining is to
extract the pairs of gradient-probe cell characteristics associated with big changes in measure from a data cube.

However, the previous studies are mainly explored for a general data cube. It is well known that the size of a
cube is always huge and the cost of cube computation is also expensive. So the process of constrained cube gradient
mining would be expensive. In this paper, we consider the problem of mining constrained cube gradient for a
condensed data cube. The condensed cube[7] is a novel and efficient data organization approach. The basic spirit of
the condensed cube is to condense a number of cells of a cube into a cell, that is, a single tuple. Thus a condensed
cube can reduce dramatically the size of a data cube itself and hence the cube computation time. Since the existing
mining algorithms are explored for a general cube, it is not applicable to our problem where the probe cells and
gradient cells are stored in a condensed format. A new algorithm named as eLiveSet is developed for our problem
by the extension of the existing LiveSet-driven algorithm (short for LiveSet)[6]. There are some related works
regarding our problem including the discovery-driven exploration of cube[8] and the cube computation[9,10].

This paper is organized as follows: an overview of condensed cube is introduced in section 2. The problem
definition is given in section 3. The mining algorithm for our problem is discussed in section 4. The experimental
studies are given in section 5. The conclusions are in section 6.

 1708 Journal of Software 软件学报 2003,14(10)

2 An Overview of Condensed Cube

The CUBE BY operator[5] is a multidimensional extension of relational GROUP BY operator. While the
semantics of the CUBE BY operator is to partition a relation into groups based on the values of the attributes
specified in the CUBE BY operator and then apply aggregations functions to each of such groups, the CUBE BY
operator computes GROUP BY corresponding to all possible combinations of attributes in the CUBE BY operator.
In general, a CUBE BY operator on n attributes computes 2n GROUP BYs, or cuboids. The grouping attributes are
called dimensions and the attributes that are aggregated are called measures. A tuple with dimension attributes and
measure attributes in a data cube is called a cell. While the aggregation is applied to groups of relation table tuples
obtained by partitioning the relation table on the cuboid attributes, there exist such partitions that contain only one
tuple that is named as a single tuple. Assumed that the relation table R with 3-dimension attributes (A,B,C) and one
measure attributes M in Fig.1 is the running example relation table, the aggregate function is SUM function. When
the relation table R is partitioned on dimension A (i.e. cuboid A), the partition in which the dimension value of A is
equal to 0 contains a single tuple (0,1,1,50). The corresponding cell aggregated from this tuple is (0,*,*,50), where
“*” denotes the value “all”, i.e., aggregated to the highest level on this dimension. Given a set of dimension

attributes SD⊂ A�, if r is the only tuple in its partition when the relation table is partitioned on SD, we say tuple r is
a single tuple on SD, and SD is called the single dimensions of r. For example, {A} is the single dimension of the
single tuple (0,1,1,50). If a relation table tuple r is a single tuple on SD, then r is also a single tuple on any superset
of r. For example, the tuple (0,1,1,50) is also a single tuple on the any superset of {A}, i.e., {AB}, {AC} and
{ABC}�. We associate each single tuple a set of SDs, SDSET to represent the fact that a tuple can be a single tuple
on different dimensions. The single tuple r and its SDSET can express many cells aggregated from this single tuple.
For example, the single tuple (0,1,1,50) and its SDSET={{A},{AB},{AC},{ABC}} can express the four cells:
(0,*,*,50), (0,1,*,50), (0,*,1,50) and (0,1,1,50) and the four cells can be viewed as being condensed into the single
tuple (0,1,1,50).

Given a single tuple r(r(a1),...,r(an)) (r(ak) denotes the value of dimension ak (1≤k≤n)) and its single
dimensions SD={ai,...,aj} (1≤i≤j≤n) or its SDSET, the complete set of cells condensed by a single tuple r is denoted
as ExpandSet(r) and it can be computed by the following Expand operator:

• Expand(r,SD)=r′ such that m(r′)=m(r) and r′(ak)=r(ak) for ak∈SD and r′(ak)=* for ak∉SD, where m(r)
denotes the measure of r and.

• Expand(r,SDSET)={r′|r′=Expand(r,SDi), SDi∈SDSET}.
For example, given a single tuple r=(2,3,1,60) and its single dimensions SD={A}, ExpandSet(r)={(2,*,*,60),
(2,3,*,60), (2,*,1,60), (2,3,1,60)}. In general, for the given single tuple r(r(a1),…,r(an)) and its SD={ai,…,aj}

(1≤i≤j≤n), there are the number of 2n−j cells contained in ExpandSet(r), in other words, 2n−j cells are condensed into
the single tuple r. Note that all the cells in ExpandSet(r) have the same aggregation value m(r) since all of them are
only aggregated from the same single tuple.

The value of dimension ak(1≤k≤n) of any cell r′ in ExpandSet(r) can also be defined as the following Expand
principles:

(1) r′(ak)=r(ak), if ak∈SD;
(2) r′(ak)=r(ak) or r′(ak)=*, if k>j;

� Notice that we require SD≠A, where A denotes the all dimensions of a cube.

� In this paper, whenever there is no confusion, we use the concatenation of dimension names to represent the set consisting of those
dimensions. For example, the {AB} is a short of {A,B}.

 冯玉才 等:浓缩数据立方中约束立方梯度的挖掘 1709

(3) r′(ak)=*, if ak∉SD and 1≤k<j.
It is clear that the definition of Expand principles is equivalent to the definition of Expand operator. For

example, suppose r=(A=1, B=2, C=3, D=4) is a single tuple and its SD={AC}, each dimension value of the cells in
ExpandSet(r) are as follows: A=1, B=*, C=3, and D=4 or D=*, i.e., ExpandSet(r)={(A=1, B=*, C=3, D=4), (A=1,
B=*, C=3, D=*)}. According to the Expand principles, we have also two important properties on a single tuple r:

(1) The non-* dimension values of the cells in ExpandSet(r) are all derived from the single tuple r and equal to
the corresponding dimensions values of r.

(2) All of cells in ExpandSet(r) share the same non-* dimension values on SD and the cells that have the same
non-* dimension values on SD are contained in the set ExpandSet(r).

In a condensed cube, we only need to physically store the single tuple together with an extra field to store the
single dimensions information of the single tuple. The cells can be expressed by the single tuple are not stored
physically. When needed, these cells can be generated through the expand operator of the single tuple. The SD fields

of these non-single tuples are equal to ∅ in a condensed cube. These non-single tuples can be viewed as the general
cells in a general data cube since they don’t condense any cells. The illustration of the condensed cube and the
general cube of R is shown in Fig.1. A condensed cube can be computed through the BU-BST algorithm[7], which is
basically a modified version of the original BUC algorithm[9].

TID A B C M

1 0 1 1 50 TID A B C M
2 1 1 1 100 1 0 * * 50
3 2 3 1 60 TID A B C M SD 2 0 1 * 50
4 4 5 1 70 1 0 1 1 50 {A} 3 0 * 1 50
5 4 5 2 80 2 4 * * 150 ∅ 4 0 1 1 50

(a) The relation table R (b) The condensed cube of R (c) The general cube of R

 Fig.1

3 The Problem of Mining Constrained Cube Gradient

3.1 The problem definition

Given two distinct cells c1 and c2 of a data cube D of a given relation table R with n dimensions, c1 is an
ancestor of c2 and c2 is a descendant of c1 iff on every dimension attribute, either c1 and c2 share the same value, or
c1 has value ‘*’, where ‘*’ indicates ‘all’; c1 is a sibling of c2, and vice versa, iff c1 and c2 have identical values in
all dimensions except one dimension in which neither has value *. The single tuple has not descendant cell because
each dimension has the non-* value, i.e., the specific value. For simplicity, we sometimes say c1 is similar to c2 if c1
is a descendant, an ancestor or a sibling of c2.

A significance constraint Csig is usually defined as conditions on measure attributes. The significance constraint
is assumed to be anti-monotonic in this paper. Anti-montonicity is very useful for the pruning of cells in the cube
computation algorithm. It states that if a cell c does not satisfy an anti-monotonic constraint, none of c’s
descendants can do so. Some methods for deriving weaker anti-monotonic constraints from non-anti-monotonic
constraints are discussed in the Ref.[10]. A probe constraint Cprb is usually defined as conditions on dimension
attributes and is used to select a set of user-desired cells. A cell c is significant iff Csig(c)=true, and a cell c is a
probe cell iff c is significant and Cprb(c)=true. The complete set of probe cells is denoted as P. The set of significant
cells that may have gradient relationship with a set of probe cells, P, are called the gradient cells of P. The gradient

constraint has the form Cgrad(cg, cp) ≡(g(cg,cp) θ v), where θ is in {≤,≥,<,>}, v is a constant value, and g is a
gradient function. In this paper, the gradient constraint form is defined as follows: “m(cg)−m(cp) θ v”, where m(c) is

 1710 Journal of Software 软件学报 2003,14(10)

a measure value for a cell c. A gradient cell cg is interesting with respect to a probe cell cp∈P iff cg is significant, cg
and cp satisfy similar relationship and Cgrad(cg,cp)=true. Formally, given a relation table R, a significant constraint
Csig, a probe constraint Cprb and a gradient constraint Cgrad(cg,cp), the constrained cube gradient problem is to find
all the interesting gradient-probe pairs (cg,cp) such that Cgrad(cg,cp)=true.

Example 1. Supposed Cprb≡(A=4,B=*,C=*), Csig≡(M>50), Cgrad(cg,cp)≡(m(cg)−m(cp))>0, the cells cg=(4,*,*,
150), cp1=(4,5,1,70) and cp2=(4,5,2,80) are significant. cg is an ancestor of cp1 and cp2, cp1 is a sibling of cp2 and (cg,
cp1), (cg,cp2) are interesting gradient-probe cell pairs.

For a single tuple c, if c is significant, all of the cells condensed into c are significant because they have the
same measure to c. We say c satisfy the probe constraint Cprb, if each dimension of c has the dimension values that
satisfy the corresponding dimension value constraints of Cprb.

Given a relation table R, a significant constraint Csig, a probe constraint Cprb and a gradient constraint Cgrad,
the goal of our problem is to find all interesting gradient-probe cell pairs (eg,ep) such that Cgrad(eg,ep)=true, where

eg∈ExpandSet(cg) and ep∈ExpandSet(cp)�.

3.2 The LiveSet algorithm

The main framework of LiveSet algorithm is as follows: (1) Apply a cube computation algorithm, such as
H-cubing[10] or BUC, to compute the set of probe cells P from the relation table R using both the significance and
probe constraints. (2) Produce the interesting gradient-probe cell pairs, that is, to determine which gradient cell
should be associated with which probe cells.

The live set method is used to in the second step. In general, the live set of a gradient cell cg, which is denoted
as LiveSet(cg), is the set of probe cells cp such that it is possible that (cg′,cp) is an interesting gradient-probe pair, for
some descendant cell cg′ of cg. As generating the interesting gradient-probe cell pairs, we only need to compare the
gradient cell, which is generated by a cube computation algorithm, with its related probe cells (i.e. live set)� but the
complete set of probe cells P. Thus how to derive the live set is a key problem for the LiveSet-style algorithms. In
LiveSet algorithm, the matching analysis method is used to derive the LiveSet of the gradient cells. Let cp=(dp1,
dp2,...,dpm) be a probe cell and cg=(dg1,dg2,...,dgm) be a gradient cell. The number of solid-mismatches between cp and
cg is the number of dimensions in which both values are not * but are not matched, i.e., of different values. The
number of *-mismatches between cp and cg is the number of dimensions in which cp is * but cg is not. It is noticed
that the notion of *-mismatches is not symmetric, i.e., if cg has * value on a dimension but cp has a non-* value on
the same dimension, this is not considered a *-mismatch. A probe cell cp is matchable with a gradient cell cg if either
cg and cp have no solid-mismatch, or they have exact one solid-mismatches but no *-mismatch.

Example 2. In the example1, the probe cell cp=(4,5,1,70) is matchable with cg1=(4,*,*,150). However, cp is not
matchable with cg2=(1,1,1,100) since there are two solid-mismatches between cp and cg2.

Property 1. Assume that cg1 and cg2 are gradient cells and cg2 is a descendant of cg1. Then LiveSet(cg2)⊆
LiveSet(cg1).

This property ensures that we can produce the live set of a descendant cell from that of the ancestor cell.

Property 2. Let cp is a probe cell and cg is a gradient cell. If cp is matchabel with cg then cp∈LiveSet(cg)
otherwise cp∉LiveSet(cg).
 This property shows that the matching analysis method can be used to derive the live set.

� As the gradient cell cg (or the probe cell cp) is a non-single tuple, the set ExpandSet(cg) (or ExpandSet(cp)) only contains one tuple,
i.e., the cg (or cp) itself and then eg (or ep) is equal to cg (or cg).

� The initialized gradient cell cg is set to (*,*…,*) and the LiveSet(cg) is set to the complete probe cell set P.

 冯玉才 等:浓缩数据立方中约束立方梯度的挖掘 1711

Example 3. Suppose the set of probe cells P has four cells with three dimensions and one measure:
P={(0,*,*,50), (0,1,*,50), (0,*,1,50), (0,1,1,50)}, the gradient cell cg=(4,*,*,150) and LiveSet(cg)=P. cg′=(4,5,*,150)
is a descendant of cg. According to property1 and property2, the LiveSet(cg′)=∅, i.e., it is the result of pruning the
cells (0,*,*,50), (0,1,1,50), (0,*,1,50) and (0,1,*,50) from LiveSet(cg).

4 The Mining Algorithm

In this section, the eLiveSet algorithm for our problem is discussed. In particular, two key techniques of
eLiveSet algorithm are introduced. The first technique is on how to derive the live set that contains the single tuples.
The other technique is the partial expansion technique of single tuples. Before the end of this section, the complete
description of eLiveSet algorithm is given.

4.1 Derive the live set

Intuitively, the live set concept describes the related probe cells of a gradient cell. The basic cell of a single
tuple represents a special cell that is an ancestor of the other cells in ExpandSet. The potential concept defines the
conditions that a gradient cell can be processed further in the depth-first order.

Definition 1. Given a gradient cell cg, the live set of cg is defined as following:

(1) The gradient cell cg is a non-single tuple. For a probe cell cp that is a single tuple, we say cp∈LiveSet(cg) if
there exists a certain cell cp′∈ExpandSet(cp) and (cg′,cp′) is a possibly interesting gradient-probe cell pair for some
descendant cells cg′ of cg. On the other hand, if cp is a non-single tuple, we say cp∈LiveSet(cg) if (cg′,cp) is a
possibly interesting gradient-probe cell pair for some descendant cells cg′ of cg.

(2) The gradient cell cg is a single tuple. Due to cg likely condenses many gradient cells, we define

LiveSet(cg)=∪LiveSet(cgi) where cgi∈ExpandSet(cg) and 1≤i≤|ExpandSet(cg)| and |ExpandSet(cg)| denotes the
cardinal number of the set ExpandSet.

Definition 2. Given a single tuple r, the cell in ExpandSet(r) that is obtained by taking the * value for each
dimension of r except the dimensions in SD of r, is called the basic cell of the single tuple r and is denoted as cb. It

is clear that cb∈ExpandSet(r). For example, assume that cg=(A=1,B=2,C=3,D=4) is a single tuple and its SD={B,C},
then the basic cell of cg, cb=(*,2,3,*). It is also clear that cb is an ancestor of the other cells in ExpandSet(r) because
the other cells is obtained by taking the non-* value for the dimensions that is not in SD from cb.

Definition 3. A gradient cell cg is potential to expand higher dimension if it satisfy the following conditions:
(1) cg is not a single tuple; (2) Csig(cg)=true; (3) Cgrad(cg,cp)=true, for some probe cell cp in LiveSet(cg).

Lemma 1. Given a gradient cell cg and a probe cell cp that is a single tuple. If cp is not matchable with cg, then

for any cell c∈ExpandSet(cp), c is not similar to cg′ that is a descendant of cg.
Proof. Suppose cp is not matchable with cg. Then cp and cg have at least two solid-mismatches (there are not

*-mismatches between cp and cg because cp is a single tuple and has no * dimension value). Without loss of

generalization, we assume that cp has different non-* values with cg on dimensions (a1,…,ai) (i≥2). Both cg′ and cg
have the same non-* values on dimensions (a1,…,ai) because cg′ is a descendant of cg. Thus, cp also has different

non-* values with cg′ on dimensions (a1,…,ai) (i≥2). Two cases raise here, i.e., {a1,…,ai}∩SD≠∅ and
{a1,…,ai}∩SD=∅, where SD is the single dimensions of the single tuple cp.

(1) Suppose {a1,…,ai}∩SD≠∅. Without loss of generalization, we suppose {a1,…,ai}∩SD={a1,...,aj}(j≥1).
From the property of the single tuple, it is known that all of cells in ExpandSet(cp) share the same non-* values on
dimensions (a1,…,aj). Thus, c has different non-* values with cg′ on dimensions (a1,…,aj). Suppose j>1, i.e., c and
cg′ have at least two different non-* values on dimensions (a1,…,aj), c is not similar to cg′. Suppose j=1. Since cp

and cg′ have at least two different non-* dimension values, there is at least another dimension ad, where 1≤d≤i, in

 1712 Journal of Software 软件学报 2003,14(10)

which cp and cg′ have different non-* value. The value of dimension ad of any cell c∈ExpandSet(cp) is either equal
to a non-* value cp(ad), where cp(ad) denotes the value of cp on dimension ad, or equal to *. If equal to a non-*
value, c and cg′ have different non-* dimension value on dimension ak and ad. c is not similar to cg′. If equal to *
value, c and cg′ have different non-* dimension value on aj except the dimension ad in which c has * but cg′ has
non-*. Thus, c is also not similar to cg′.

(2) Suppose {a1,…,ai}∩SD=∅ (i≥2). According to the values of dimensions (a1,…,ai), the cells in
ExpandSet(cp) can be divided into three types: (a) the cells in which the values of dimensions (a1,…,ai) are all equal
to *; (b) the cells in which only one dimension value is non-* and the others are *; (c) the cells in which more than
two dimension values are non-*. For the case of (a), suppose c is similar to cg′, there is only a case that c is an
ancestor of cg′ (Because the values of dimensions (a1,…,ai) of cell c are * value, whereas the values of dimensions
(a1,…,ai) of cell cg′ are non-*). Then c and cg′ should share the same value or c has * on the remaining dimensions
A−{a1,…,ai}, where A denotes the all dimensions of cube. Due to c has non-* dimension value on SD that is
contained in A−{a1,…,ai}, c and cg′ should share the same non-* value on SD. Then cg′ should be contained in

ExpandSet(cp) according to the property(2) of the single tuple. If cg′∈ExpandSet(cp), the non-* values of dimensions
of cg′ are all derived from the corresponding dimension values of cp. As cg is an ancestor of cg′, the non-* values of
the corresponding dimensions of cg should be same to that of cg′. Then the non-* dimension values of cg are also
derive from cp. So cp and cg surely have no two solid-mismatches. It is in contradiction to the supposition: cp is not
matchable with cg. c is not similar to cg′. For the case of (b), suppose the only one different non-* value dimension

is aj (1≤j≤i) and the * value dimension is ak (1≤k≤i, k≠j). Then c and cg′ have one different non-* value on
dimension aj except one dimension ak in which c has * but cg′ has non-* value, c is not similar to cg′. For the case of

(c), c and cg′ have more than two different non-* dimension values, c is not similar to cg′. �
Lemma 2. Given two gradient cells cg, cg′ and cg′ is obtained from cg in the depth-first order, we have

LiveSet(cg′)⊆LiveSet(cg).
Proof. Two cases raise here:

(1) Suppose cg′ is a non-single tuple. For every cp∈LiveSet(cg′), there are two special cases: cp is either a single
tuple or a non-single tuple. In the case that cp is a non-single tuple. Since cp∈LiveSet(cg′), it is known that (cg″,cp) is
a possible gradient-probe cell pairs, where cg″ is a descendant of cg′. Due to cg′ is obtained from cg in the depth-first
order, i.e., cg′ is obtained by taking specific values for some dimensions in which cg has * value, cg′ is a descendant
of cg. Since cg″ is a descendant of cg′ and cg′ is a descendant of cg, cg″ is also a descendant of cg according to the

definition of descendant. Due to (cg″,cp) is a possible gradient-probe cell pairs, we also have cp∈LiveSet(cg). On the
other hand, assume that cp is a single tuple. It is known that there exists a certain cell cp′∈ExpandSet(cp) and
(cg″,cg′) is a possible gradient-probe cell pairs, where cg″ is a descendant of cg′ and cg. Thus, we have
cp∈LiveSet(cg). In a word, for every cp∈LiveSet(cg′), we have cp∈LiveSet(cg). Therefore, LiveSet(cg′)⊆ LiveSet(cg)
is held.

(2) Suppose cg′ is a single tuple, we have LiveSet(cg′)=∪LiveSet(cgi′) where cgi′∈ExpandSet(cg′) and 1≤i≤
|ExpandSet(cg′)|. Assume that cb′ is the basic cell of cg′, we have cb′∈ExpandSet(cg′). For any cell cgi′ in
ExpandSet(cg′) that is not equal to cb′, it is known that cgi′ is a descendant of cb′. Due to both cgi′ and cb′ are

non-single tuples, we have LiveSet(cgi′)⊆LiveSet(cb′) according to the above proof of (1) of Lemma 2. So ∪
LiveSet(cgi′)⊆LiveSet(cb′) where cgi′≠cb′ and 1≤i≤|ExpandSet(cg′)|. Then (∪LiveSet(cgi′))∪(LiveSet(cb′))=LiveSet
(cb′), that is, ∪LiveSet(cgi′)=LiveSet(cb′) for every cell cgi′∈ExpandSet(cg′). Again, cg′ is a single tuple. Then cg′ is
obtained by partitioning cg on the dimensions of SD of cg′ in the depth-first order and cg has * value on some
dimensions of SD. Since the basic cell of cg′, cb′ is obtained by take more special value (i.e., non-* value) for the
dimensions of SD of cg′, cb′ is a descendant of cg. Similarly, according to the above proof of (1) of Lemma 2, we

 冯玉才 等:浓缩数据立方中约束立方梯度的挖掘 1713

also have LiveSet(cb′)⊆LiveSet(cg). Therefore we have LiveSet(cg′)=∪LiveSet(cgi′)=LiveSet(cb′)⊆LiveSet(cg). �
From Lemmas 1 and 2, we can derive LiveSet(cg′) by pruning the single tuples that are not matchable with cg′

or the basic cell of cg′, cb′ from LiveSet(cg). For the non-single tuples in the LiveSet(cg), they can be pruned from
LiveSet(cg) by the propery2 in the section3. In a word, for a given potential gradient cell cg and it’s descendant cell
cg′, we can derive LiveSet(cg′) from LiveSet(cg) by pruning the cells that are not matchable with cg′ or cb′ from
LiveSet(cg).

4.2 Partial expansion technique

In order to produce all interesting gradient-probe cell pairs, as the gradient cells or probe cells are single
tuples, we should expand the single tuples. We observe that it is not necessary to compute the all cells condensed
into cg or cp. In particular, the cells in ExpandSet that are not meaningful, i.e, not similar to the cells to be compared
are not computed. For example, suppose cp, cg
have dimensions A, B, C, D and cp=(1,2,3,3),
cg=(2,3,2,3) and the single dimensions SDs of cp,
cg are both {A}. The dimension values of the
cells of ExpandSet(cp) and ExpandSet(cg) are
shown in the two rectangle frames in Fig.2. We
scan and compare the values of dimension A, B,
C, and D in the two rectangle frames according
to the order of dimension lexicography. The cells in ExpandSet(cg) and the cells in ExpandSet(cp) have different
non-* value on dimension A. Thus, there is only one possibly meaningful relationship between the cells in
ExpandSet(cp) and the cells in ExpandSet(cg), that is, the sibling relationship. In general, both the different
dimension values on one dimension in ExpandSets are non-* value, the meaningful relationship is sibling and if one
dimension value is * value whereas the other dimension value is non-*, the meaningful relationship is
ancestor/descendant. For the ExpandSets in Fig.2, according to the definition of sibling, the cells in ExpandSet(cp)
should share same values with the cells in ExpandSet(cg) on the remaining dimensions. Thus, the meaningful values
of dimensions of the cells in ExpandSet(cp) are as follow: A=1, B=*, C=* and D=3 or D=*, i.e., ExpandSet(cp)=
{(1,*,*,3), (1,*,*,*)}. ExpandSet(cp) should contain 23=8 cells if the single tuple cp takes the complete expansion.
Similarly, we have ExpandSet(cg)={(2,*,*,3), (2,*,*,*)}. The similar gradient-probe cell pairs are ((1,*,*,3), (2,*,*,
3)) and ((1,*,*,*), (2,*,*,*)). In the case that either cg or cp is a non-single tuple, it is easy to determine the
meaningful dimension values in ExpandSet because each dimension of a non-single tuple has a definite dimension
value. The above method is named as partial expansion technique in this paper. The main spirits of partial expansion
technique is to recognize the possibly meaningful relationship between the cells in ExpandSet(cp) and the cells in
ExpandSet(cg) and then utilize the relationship to determine the meaningful values of the dimensions in ExpanSets
and hence reduce the size of ExpandSets. Thus, the key of partial expansion is to recognize the possibly meaningful
relationship. Intuitively, the relationship can be recognized through scanning and comparing the dimension values.
In the case that there are not dimension values that satisfy the possibly meaningful relationship, the single tuples
need not to expand and there no similar gradient-probe cell pairs to be generated. The probe constraint can be used

to further filter the meaningful dimension values in ExpandSet(cp). For example, in the Fig.2, if the Cprb≡(A=1,B=2,
C=*, D=*), then the dimension value of dimension B should not take the “Or” value but take the non-value “2”.

ExpandSet(cg)

ExpandSet(cp)

A=2, B=3 or *, C=2 or *, D= 3 or *

A=1, B=2 or *, C=3 or *, D= 3 or *

Fig.2 An example of partial expansion of two single tuples

The complete procedure of generating the interesting gradient-probe cell pairs using the partial expansion
technique is given as following:
Procedure: GIP (Generating the Interesting gradient-probe cell pairs using Partial expansion)

 1714 Journal of Software 软件学报 2003,14(10)

Input: The gradient cell cg, the probe cell cp, a Cprb, a Cgrad, and the number of dimension of cube n.
Output: The interesting gradient-probe cell pairs between cg and cp.
Method:
1. If Cgrad(cg,cp)=false, return;

2. For each dimension ak (1≤k≤n) {
3. Apply the Cprb to determine the dimension values of ak in ExpandSet(cp);
4. If the meaningful relationship is not recognized
5. Compare the dimension values of ak between ExpandSet(cg) and ExpandSet(cp) and recognize the

meaningful relationship;
6. Else
7. Use the relationship to determine the meaningful values of dimension ak in ExpandSets and if there not

meaningful dimension values that satisfy the possibly meaningful relationship then return;}

8. Output the interesting gradient-probe cell pairs (c,c′) where c∈ExpandSet(cg), c′∈ExpandSet(cp);
The computational complexity of the GIP procedure can be measured in terms of the number of execution

times of key operation. The comparison operation of dimensions of cells is taken as the key operation. The total

number of execution times is equal to ncExpandSetcExpandSetn pg ××+ |)(||)(| , where the ExpandSets contain no

such cells that are not meaningful.

4.3 The description of eLiveSet algorithm

Similar to the framework of the LiveSet algorithm, eLiveSet algorithm also consists two phases: (1)
Computing the set of probe cells P from the relation table R using BU-BST algorithm with the significance and
probe constraints, (2) Produce the interesting gradient-probe cell pairs.
Algorithm: eLiveSet (short for extending LiveSet algorithm).
Input: A relation table R, a Csig, a Cprb and a Cgrad.
Output: The complete set of gradient-probe cell pairs satisfying the constraints.
Method:
1. Apply the BU-BST algorithm to compute set of probe cells P from R utilizing the Csig and Cprb constraints.
2. Initialize the potential gradient cell to cell cg=(*,*,…,*) and LiveSet(cg)=P.
3. For every gradient cell cg do {
4. If (Csig(cg)=true)

5. For every cp∈LiveSet(cg) {
6. If both the gradient cell cg and probe cell cp are single tuples (i.e., their SDs are not equal to ∅),

invoking the GIP procedure to output the interesting gradient-probe cell pairs (e,e′), where e∈ExpandSet(cg)
and e′∈ExpandSet(cp);

7. If both the gradient cell cg and probe cell cp are not single tuples and cg is similar to cp and Cgrad(cg,
cp)=true, output (cg,cp);

8. If the gradient cell cg is a single tuple but the probe cell cp is not, invoking the GIP procedure to output

the interesting gradient-probe cell pairs (e,cp), where e∈ExpandSet(cg);
9. If the gradient cell cp is a single tuple but the probe cell cg is not, invoking the GIP procedure to output

the interesting gradient-probe cell pairs (cg,e′), where e′∈ExpandSet(cp); }
10. Use the measure of cg to prune LiveSet(cg).
11. If LiveSet(cg) is empty or cg has no potential to grow, terminate this branch and backtrack to process the next

 冯玉才 等:浓缩数据立方中约束立方梯度的挖掘 1715

cell according to the depth-first order.
12. If cg has potential to grow, expand it to the next level, according to the depth-first order. If a descendant cell cg′

of cg is processed from this expansion, derive LiveSet(cg′) from LiveSet(cg) according to the method discussed
in section 4.1.}

Algorithm Explanation: (1) Although the gradient function is assumed as the form ‘m(cg)−m(cp) θ v’, our
algorithm is still applicable to the other form gradient functions by modifying the computation part of the gradient

function. In addition, if v is not a const value but some interval such as 1≤v≤2, we should modify the gradient test
part by testing not only the lower bound but also the higher bound. (2) We can use the measure of cg to further prune
LiveSet(cg) in the step 10. In particular, for any probe cell cp in LiveSet(cg), if Cgrad(cg,cp)=false, cp can be pruned
from LiveSet(cg). In our study, the probe cells in LiveSet(cg) are assumed to be stored in the ascending order
according to the measures. If the measure of one probe cell cp can not satisfy the constraint Cgrad(cg,cp), all the probe
cells following it will not satisfy the gradient constraints function and hence can be pruned from LiveSet(cg). (3) In
the extreme case that there are not single tuples in the condensed cube, eLiveSet algorithm degenerates into the
LiveSet algorithm.

5 Experiments

In this section, we present our experimental results on the performance (in terms of time) of mining
constrained cube gradient from a data cube. All experiments are conducted on a PC platform with an Intel Pentium
Ⅲ 500M CPU, 218M RAM and Windows 2000 OS. Two mining algorithms are used in our experiments. The first
algorithm is eLiveSet that is constructed on a condensed cube that is computed by the BU-BST algorithm. The other
is LiveSet that is constructed on a general cube that is computed by BUC algorithm. All experiments are performed
using synthetic (algorithmically generated) datasets. To study the effects of data skew, we generate the first dataset
of 1M (=1 024) tuples following the Zipf distribution with different zip factors. A zip factor of 0 means the data is
uniformly distributed. In the first dataset, the number of dimension is set to 9 and the cardinality of all attributes is
set to 1000. The aggregate function used in the cube computation algorithm is SUM function. The performance of
the algorithms with different constraints is shown in Figs.3, 4 and 5 respectively. In Fig.3, the significance
constraints Csig>0 and the gradient constraints Cgrad=m(cg)−m(cp)>0. The value of the non-* value dimension in
probe constraint Cprb is set to [1,500]. The non-* value dimensions in Cprb are fixed on the first k dimensions

(1≤k≤9), respectively. Fig.3 shows the runtime of both algorithms are less with the increase of the number of non-*
value dimensions in Cprb. However, eLiveSet algorithm is faster than LiveSet algorithm. The main reason is that
many cells are condensed into the single tuples and the search space of the cells including the probe cells and the
gradient cells to be handled reduces dramatically in eLiveSet algorithm. Just as shown in Figs.4 and 5, the
constraints would reduce also dramatically the search space of the cells. However, in the uniform datasets, the
condensed cube still plays an important role. Figures 4 and 5 show the runtime of both algorithms are less with the
increase of the threshold of Csig and Cgrad. In Fig.6, we increase the skew in the distribution of distinct values in the
dataset. The test shows the runtime of both algorithms is larger with the increase of the Zipf. When the skew is high,
the number of single tuples would be smaller and the number of gradient cells and probe cells would be also
smaller. However, the time of cube computation would be larger with the increase of the skew and affect the
performance of the algorithms.

 1716 Journal of Software 软件学报 2003,14(10)

3 0 0 .0 0

4 0 0 .0 0

5 0 0 .0 0

6 0 0 .0 0

7 0 0 .0 0

8 0 0 .0 0

9 0 0 .0 0

1 0 0 0 .0 0

1 1 .5 2 2 .5 3
Th

e
ru

nt
im

e
(s

)
3 5 0 .0 0
3 8 0 .0 0
4 1 0 .0 0
4 4 0 .0 0
4 7 0 .0 0
5 0 0 .0 0

1 5 3 0 4 5 6 0

Th
e

ru
nt

im
e

(s
)

eL iv eSet

L iv eSet

2 0 0 .0 0

2 4 0 .0 0

2 8 0 .0 0

3 2 0 .0 0

3 6 0 .0 0

5 0 1 5 0 2 5 0 3 5 0

Th
e

ru
nt

im
e

(s
) e L iv e Se t

L iv e Se t

100.00
300.00
500.00
700.00
900.00

1100.00
1300.00

1 2 3 4 5 6 7 8 9

Th
e

ru
nt

im
e

(s
)

eLiveSet
LiveSet

Fig.3 The scalability with probe cells Fig.4 The scalability with significance threshold

Fig.5 The scalability with gradient threshold Fig.6 The scalability with the Zipf distribution

6 Conclusions

In this paper, we study the problem of mining constrained cube gradient for a condensed cube. A new
algorithm, eLiveSet, is developed for our problem by the extension of the existing efficient algorithm LiveSet. The
performance tests of algorithms are also reported. There are many interesting issues in our future wok, for example,
we can mine the cube gradient in an interactive mode but in batch mode, as shown in this paper. Further enhancing
the performance of eLiveSet algorithm is also our interesting topic.

Acknowledgement The authors would like to thank the anonymous referees for providing many useful comments.

References:
[1] Han J. Towards on-line analytical mining in large databases. SIGMOD Record, 1998,27(1):97~107.
[2] Palpanas T. Knowledge discovery in data warehouses. SIGMOD Record, 2000,29(3):88~100.
[3] Abdulghani AA. Cubegrades-Generalization of association rules to mine large datasets [Ph.D. Thesis]. New Brunswick: The State

University of New Jersey, 2001.
[4] Agrawal R, Tomasz I, Arun NS. Mining association rules between sets of items in large databases. In: Buneman P, ed. Proceedings

of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1993. 207~216.
[5] Gray J, Bosworth A, Layman A, Pirahesh H. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and

sub-total. In: Stanley YW, ed. Proceedings of the 12th International Conference on Data Engineering. Washington: IEEE Computer
Society Press, 1996. 152~159.

[6] Dong G, Han J, Lam J, Pei J, Wang K. Mining multi-dimensional constrained gradients in data cubes. In: Peter MG, ed.
Proceedings of the 27th International Conference on Very Large Data Bases. San Fransisco: Morgan Kaufmann Publishers, 2001.
321~330.

[7] Wang W, Feng J, Lu H, Jeffrey XY. Condensed cube: An effective approach to reducing data cube size. In: Rakesh A, ed.
Proceedings of the 18th International Conference on Data Engineering. Washington: IEEE Computer Society Press, 2002. 155~165.

[8] Sarawagi S, Agrawal R, Megiddo N. Discovery-Driven exploration of OLAP data cubes. In: Hans-Jörg Schek, ed. Proceedings of
the 6th International Conference on Extending Database Technology. New York: Springer-Verlag, 1998. 168~182.

[9] Beyer K, Ramakrishnan R. Bottom-Up computation of sparse and iceberg CUBE. In: Davidson DB, Delis A, eds. Proceedings of
the 1999 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1999. 359~370.

[10] Han J, Pei J, Dong G., Wang K. Efficient computation of iceberg cubes with complex measures. In: Sellis T, ed. Proceedings of the
2001 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2001. 1~12.

	Introduction
	An Overview of Condensed Cube
	The Problem of Mining Constrained Cube Gradient
	The problem definition
	The LiveSet algorithm

	The Mining Algorithm
	Derive the live set
	Partial expansion technique
	The description of eLiveSet algorithm

	Experiments
	Conclusions

