首页 | 官方网站   微博 | 高级检索  
     


Observer‐based decentralized adaptive control for large‐scale pure‐feedback systems with unknown time‐delayed nonlinear interactions
Authors:Sung Jin Yoo
Affiliation:School of Electrical and Electronics Engineering, Chung‐Ang University, Seoul, South Korea
Abstract:This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:decentralized adaptive control  output‐feedback  unknown time‐delayed interactions  large‐scale pure‐feedback systems  function approximation technique
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号