Prediction of average droplet size in flowing immiscible polymer blends |
| |
Authors: | Ivan Fortelný Josef Jůza |
| |
Affiliation: | Institute of Macromolecular Chemistry AS CR, Praha 6, Czech Republic |
| |
Abstract: | The paper is focused on calculation of the average droplet size in immiscible blends during their steady flow. Available theoretical and experimental results of studies of the droplet breakup and coalescence are utilized to derive the equations describing dynamic equilibrium between the droplet breakup and coalescence. New expression for the coalescence efficiency, reliably reflecting recent theoretical results, is proposed. The equation for the average steady droplet size, controlled by the stepwise breakup mechanism and coalescence of droplets with not very different sizes, is derived for blends containing up to 10–20 vol % of the droplets. For blends with above approximate 20 vol % of the droplets, the breakup by the Tomotika mechanism and coalescence in highly polydisperse system is modeled. Results of the derived equations are compared with experimental data; qualitative agreement is found for the dependence of the droplet size on the amount of the dispersed phase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45250. |
| |
Keywords: | coalescence droplet breakup phase structure evolution polymer blends |
|
|