首页 | 官方网站   微博 | 高级检索  
     


The Age of Cortical Neural Networks Affects Their Interactions with Magnetic Nanoparticles
Authors:Andy Tay  Anja Kunze  Dukwoo Jun  Eric Hoek  Dino Di Carlo
Affiliation:1. Department of Bioengineering, University of California, Los Angeles, CA, USA;2. Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore;3. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA;4. California Nanosystems Institute, University of California, Los Angeles, CA, USA;5. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
Abstract:Despite increasing use of nanotechnology in neuroscience, the characterization of interactions between magnetic nanoparticles (MNPs) and primary cortical neural networks remains underdeveloped. In particular, how the age of primary neural networks affects MNP uptake and endocytosis is critical when considering MNP‐based therapies for age‐related diseases. Here, primary cortical neural networks are cultured up to 4 weeks and with CCL11/eotaxin, an age‐inducing chemokine, to create aged neural networks. As the neural networks are aged, their association with membrane‐bound starch‐coated ferromagnetic nanoparticles (fMNPs) increases while their endocytic mechanisms are impaired, resulting in reduced internalization of chitosan‐coated fMNPs. The age of the neurons also negates the neuroprotective effects of chitosan coatings on fMNPs, attributing to decreased intracellular trafficking and increased colocalization of MNPs with lysosomes. These findings demonstrate the importance of age and developmental stage of primary neural cells when developing in vitro models for fMNP therapeutics targeting age‐related diseases.
Keywords:age  CCL11/eotaxin  conditioned media  cortical neurons  nanoparticles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号