15

铝粉烧结锥形件压扭成形模拟及实验研究

李达,章凯,李萍

(合肥工业大学 材料科学与工程学院,安徽 合肥 230009)

摘要:以铝粉烧结锥形件为研究对象,应用 DEFORM 软件对其压扭成形过程进行了三维有限元模拟,获得了成形过程中相对密度、等效应变、速度场的分布规律,并在模拟的基础上进行了相关实验研究。结果 表明压扭工艺可以成形出近乎致密的铝粉锥形件。

关键词:铝粉;锥形件;高压扭转;数值模拟;实验

中图分类号: TG319 文献标识码: A

文章编号: 1674-6457(2010)04-0015-03

Simulation and Experimental Study in HPT Process of Sintered Aluminum Cone

LI Da, ZHANG Kai, LI Ping

(School of Material Science and Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: The FEM simulation in HPT process of sintered aluminum cone was studied with DEFORM, and the distribution of relative density and strain-effective and velocity was obtained. Based on the simulation some related experiment research was conducted. The results show that the nearly compact aluminum cones can be producted by the high-pressure torsion.

Key words: aluminium powder; cone; high-pressure torsion; numerical simulation; experiment

大塑性变形法(SPD)具有将铸态粗晶金属晶粒 细化到纳米量级的巨大潜力^[1],高压扭转法(HPT) 是大塑性变形法中的一种,由美国学者于 20 世纪 40 年代首先提出并进行实验、理论研究,而后逐步 发展并应用于生产。该工艺的实质是在高度方向施 加压力的同时,通过主动摩擦作用在其横截面上施 加一扭矩,促使变形体产生轴向压缩和切向剪切变 形,可以有效细化晶粒,不仅提高了材料的强度,而 且改善了塑性^[2-4]。

在国防工业中,锥形件得到了重要的应用,如用 于穿甲弹、侵彻弹。早期锥形件的加工方法主要有 旋压、车加工、冲压、冷挤压等,但使用效果不理想。 如今,以金属粉末为基本材料来加工锥形件具备配 料灵活方便,射孔后无杵堵,生产效率高等优点,一 直受到重视^[5-8]。文中以铝粉烧结锥形件为研究对 象,模拟了锥形件的压扭成形过程,做了相关实验研 究,并对结果进行了讨论和分析。

1 有限元模型建立

1.1 几何模型建立

模型由 3 部分构成:上模、下模和坯料。采用造型软件 Unigraphics 对各部件进行实体建模后,通过.stl 数据转换格式文件将各部件的 CAD 模型导入到专业有限元分析软件 DEFORM-3D。由于在

收稿日期: 2010-05-17

基金项目:合肥工业大学 2009 年度大学生创新性实验计划项目(2009CXSY081)

作者简介: 李达(1988-), 男, 江苏泰州人, 本科生, 主要研究方向为特种精密塑性成形。

实验中挤压类模具大多采用经过热处理的高强度模 具钢加工而成,在挤压过程中模具仅仅有很小的弹 性变形,通常可以将弹性变形忽略不计。因此,在有 限元模拟中将模具视为刚体处理,不需要考虑模具 在成形过程中的变形,即在 DEFORM 运算过程中, 刚体不参与运算,可以减少运算时间。几何模型如 图1所示。

图 1 模具总装模型 Fig. 1 Die assembly model

1.2 网格划分

坯料初始相对密度取 0.8,采用四节点四面体 单元对坯料进行网格划分,共分为 10 694 个单元。 设定上模压力 50 kN,模拟总步数 1 000 步,每 5 步 保存 1 次。下模旋转 1 圈,时间 1 min。选择剪切 摩擦方式,常摩擦系数为 0.5。有限元模型如图 2 所示。

2 有限元模拟结果分析

2.1 相对密度的分布规律

高压扭转过程中坯料的相对密度变化情况如图 3 所示。由于上模设计成阶梯型,所以坯料被封闭 在有限空间内,在压扭过程中始终处于三向压应力

图 3 相对密度分布规律 Fig. 3 Distribution of relative density

状态。同时下模的旋转产生了强大的剪切力,使坯料内部的孔隙进一步被闭合,相对密度相应提高。 由图 3 可知,压扭后的锥形件致密效果明显,几乎接 近理论相对密度值 1。

2.2 等效应变的分布规律

高压扭转过程中坯料的等效应变变化情况如图 4 所示。由于铝粉烧结锥形件为多孔材料,内部有

图 4 等效应变分布规律 Fig. 4 Distribution of strain-effective

大量空隙,所以在凸模下行至保压过程中,锥形件压 缩变形,坯料各处变形量基本相同。当上模保压,下 模旋转时,坯料受到很大的剪切力作用,开始发生大 塑性变形。由图4可知,口部的相对应变比锥部大, 因为口部的旋转半径大,扭矩大,受到强烈的剪切作 用。

2.3 速度场的分布规律

锥形件在高压扭转过程中的速度场分布如图 5 所示,从图 5 中可以直观的看到,锥形件外侧金属有 顺时针运动的趋势。相反,锥形件内侧金属由于上 模的摩擦作用有逆时针运动的趋势,金属将受到强 烈的剪切变形作用,内部的树枝晶被剪切、破碎。

3 实验研究

实验选用的高压扭转设备如图 6 所示。上模在 轴向进给的同时下模可以旋转,而其旋转角速度可 以调节。根据数值模拟中的参数对设备的参数进行 调节。

图 6 高压扭转设备 Fig. 6 Equipment of HPT

称取定量的纯铝粉末,加入适量的硬脂酸锌作 为粘结剂,考虑到纯铝在空气中容易氧化,加入了一 定量的抗氧化剂,在高压扭转设备上压制成形。将 压制好的锥形件坯料放入管式真空烧结炉中进行烧 结,为了防止烧结过程中的氧化,在烧结过程中持续 通氩气进行保护。烧结后的锥形件致密度和硬度明 显上升,但内部仍有大量孔隙,随后在高压扭转设备 上压扭成形。压扭前的锥形件如图 7a 所示,压扭后 的锥形件如图 7b 所示。经过测量,压扭后铝粉烧结 锥形件的相对密度达到了 0.98,接近于完全致密, 且与模拟结果较为符合。

a 高压扭转前

b 高压扭转后

图 7 高压扭转前后锥形件照片 Fig. 7 Photographs before and after HPT

4 结语

 1)通过对铝粉烧结锥形件高压扭转成形过程 的有限元模拟,该工艺有显著的致密效果。

2)从等效应变和速度场的分析中看出,高压扭转工艺使烧结锥形件产生了较大的变形。

3)实验研究表明,高压扭转成形可以制备出形状完整,致密度较高的铝粉烧结锥形件,为进一步的研究做好准备。

参考文献:

- REVESZ A, HOBOR S, SZABO P J, et al. Deformation Induced Crystallization in an Amorphous Cu60Zr20Ti20 Alloy by High Pressure Torsion [J]. Materials Science and Engineering, 2007 (A460 461):459-463.
- [2] 弭光宝,薛克敏,张早明,等. 压扭变形工艺研究现状及 在材料改性中的应用[C]. 第三届华东六省一市塑性 工程学术年会论文集,2005:16-21.
- [3] 薛克敏,张君,李萍,等.高压扭转法的研究现状和展望 [J].合肥工业大学学报,2008,31(10):1613-1616.
- [4] 魏颖娟,袁守谦,张兵,等.大塑性变形制备超细晶粒铝
 及铝合金材料[J].轻合金加工技术,2008,36(4):49 55.
- [5] 韩欢庆,姜伟,张鹏,等.金属粉末在药型罩中的应用[J].粉末冶金工业,2004,14(3):1-4.
- [6] 郭红军,石健,汪长栓,等.粉末药型罩的试验研究[J]. 测井技术,2005,29(2):55-57.
- [7] 郭志俊,张树才,林勇.药型罩材料技术发展现状和趋势[J].中国钼业,2005,29(4):40-42.
- [8] 王毅,姜炜,刘宏英,等.粉末药型罩材料及其工艺技术 的研究进展[J].含能材料,2007,12(5):555-559.