首页 | 本学科首页   官方微博 | 高级检索  
     

信息熵与优化LS-SVM的轴承性能退化模糊粒化预测
引用本文:陈法法,杨勇,马婧华,陈从平. 信息熵与优化LS-SVM的轴承性能退化模糊粒化预测[J]. 仪器仪表学报, 2016, 37(4): 779-787
作者姓名:陈法法  杨勇  马婧华  陈从平
作者单位:三峡大学 水电机械设备设计与维护湖北省重点实验室宜昌443002,重庆大学机械传动国家重点实验室重庆400030,重庆大学机械传动国家重点实验室重庆400030,三峡大学 水电机械设备设计与维护湖北省重点实验室宜昌443002
基金项目:国家自然科学基金(51405264, 51475266)项目资助
摘    要:
为了提高滚动轴承性能退化指标的预测精度,得到性能退化指标的一个预测范围,本文提出信息熵与优化最小二乘支持向量机(LS-SVM)的轴承性能退化趋势模糊粒化预测。首先利用信息熵理论提取轴承信号的性能退化指标序列,再利用模糊信息粒化理论对该性能退化指标序列进行模糊信息粒化;然后将粒化后的数据输入给LS-SVM进行回归预测,并采用粒子群算法(PSO)优化LS-SVM的惩罚参数和核函数参数;最后根据实测值和预测值的对比分析评估预测模型的优良性。实验结果表明,对于每个时间段内的轴承性能退化指标,该方法均能获得准确的预测结果,具备较强的实用性和工程应用价值。

关 键 词:信息熵  最小二乘支持向量机  模糊信息粒化  滚动轴承  趋势预测

Fuzzy granulation prediction for bearing performance degradation based on information entropy and optimized LS SVM
Chen Faf,Yang Yong,Ma Jinghua and Chen Congping. Fuzzy granulation prediction for bearing performance degradation based on information entropy and optimized LS SVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 779-787
Authors:Chen Faf  Yang Yong  Ma Jinghua  Chen Congping
Abstract:
In order to improve the prediction accuracy of the rolling bearing performance degradation and get a prediction range, a novel prediction method based on information entropy and optimized least squares support vector machine (LS SVM) is proposed. The performance degradation index sequences are extracted from the bearing vibration signal, and fuzzy information granulation is executed for those degradation index sequences. Then, those granulation data are input into the LS SVM to perform regression prediction. In this process, particle swarm optimization (PSO) is used to optimize LS SVM penalty parameters and kernel parameters. Finally, the prediction model is evaluated according to the comparison between the measured values and the predicted values. Experimental results show that the proposed method can obtain accurate prediction results for the bearing performance degradation index in each time period, and strong practicability and engineering application value are expected.
Keywords:information entropy   least square support vector machine   fuzzy information granulation   roller bearing   trend prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号