首页 | 官方网站   微博 | 高级检索  
     


Ultrafast Synthesis of Ultrasmall Poly(Vinylpyrrolidone)‐Protected Bismuth Nanodots as a Multifunctional Theranostic Agent for In Vivo Dual‐Modal CT/Photothermal‐Imaging‐Guided Photothermal Therapy
Authors:Pengpeng Lei  Ran An  Peng Zhang  Shuang Yao  Shuyan Song  Lile Dong  Xia Xu  Kaimin Du  Jing Feng  Hongjie Zhang
Affiliation:1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China;2. University of Chinese Academy of Sciences, Beijing, China;3. Department of Radiology, The Second Hospital of Jilin University, Changchun, China;4. University of Science and Technology of China, Hefei, China
Abstract:To elaborately fabricate real‐time monitoring and therapeutic function into a biocompatible nanoplatform is a promising route in the cancer therapy field. However, the package of diagnosis and treatment into a single‐“element” nanoparticle remains challenge. Herein, ultrasmall poly(vinylpyrrolidone)‐protected bismuth nanodots (PVP‐Bi nanodots) are successfully synthesized through an ultrafacile strategy (1 min only under ambient conditions). The nanodots are easy to synthesize in both laboratory and large scale using low‐cost bismuth ingredients. PVP‐Bi nanodots with ultrasmall size show good biocompatibility. Due to the high X‐ray attenuation ability of Bi element, PVP‐Bi nanodots have prominent performance on X‐ray computed tomography (CT) imaging. Moreover, PVP‐Bi nanodots exhibit a high photothermal conversion efficiency (η = 30%) because of the strong near‐infrared absorbance, which can serve as nanotheranostic agent for photothermal imaging and cancer therapy. The subsequent PVP‐Bi‐nanodot‐mediated photothermal therapy (PTT) result shows highly efficient ablation of cancer cells both in vitro and in vivo. PVP‐Bi nanodots can be almost completely excreted from mice after 7 d. Blood biochemistry and histology analysis suggests that PVP‐Bi nanodots have negligible toxicity. All the positive results reveal that PVP‐Bi nanodots produced through the ultrafacile method are promising single‐“element” nanotheranostic platform for dual‐modal CT/photothermal‐imaging‐guided PTT.
Keywords:bismuth  CT imaging  nanodots  photothermal imaging  photothermal therapy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号