首页 | 官方网站   微博 | 高级检索  
     

纯硅芯光纤的空间辐照环境适应性
引用本文:贾晓,朱恒静,张红旗,毛喜平,王征,贾秋阳.纯硅芯光纤的空间辐照环境适应性[J].红外与激光工程,2017,46(8):822002-0822002(5).
作者姓名:贾晓  朱恒静  张红旗  毛喜平  王征  贾秋阳
作者单位:1.中国空间技术研究院,北京 100094
摘    要:研究了光纤的辐照损伤机理,对纯硅芯光纤与传统芯层掺杂光纤的结构特点进行了系统地分析,从结构组成特点上分析了两者的抗辐照性能差异。研究了国内外关于光纤的抗辐照试验标准,对各标准中剂量率、总剂量等试验条件差异进行了对比,并对不同剂量率对光纤辐照试验结果的影响进行了分析,给出了光纤在空间辐照环境条件下应用的辐照试验条件的选择原则。最后,采用0.1 rad(Si)/s剂量率对某国产纯硅芯光纤的抗辐照性能进行了试验评估,光纤在20 k rad(Si)总剂量辐照后光纤损耗为1.934 dB/km。空间辐照性能评估结果满足该项目的宇航型号的空间环境使用需求,辐照评估结论为可用。

关 键 词:光纤    纯硅芯    辐照    适应性
收稿时间:2016-12-11

Space radiation applicability of pure silicon-core optical fibers
Affiliation:1.China Academy of Space Technology,Beijing 100094,China
Abstract:The mechanism of the radiation-induced loss in optical fibers was researched in this paper. Firstly, the structure characteristics of the pure silicon core optical fibers and traditional doped silica-core optical fibers were systematically analyzed. According to their structure characteristics, the difference of the resistance to radiation between the pure silicon core optical fibers and traditional doped silica-core optical fibers was studied. Secondly, the experimental conditions of anti-radiation standards at home and abroad were investigated. The experimental conditions including the dose rate and total dose used as anti-radiation standards had been compared. The effect of different radiation dose rates on the radiation experiments of optical fibers was analyzed. The selection principle of gamma radiation experimental conditions used in space radiation environments for fibers was given. Finally, the anti-radiation properties of a domestic pure silicon-core optical fiber with the dose rate of 0.1 rad(Si)/s were estimated, and the fiber loss after the radiation with the total dose of 20 k rad(Si) was 1.934 dB/km. The assessment results of the space radiation performances satisfied the needs of space environments for the aerospace model in the project, and the conclusion of the radiation assessment was available.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号