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Abstract One of the ultimate goals of Manifold Learning (ML) is to reconstruct an

unknown nonlinear low-dimensional Data Manifold (DM) embedded in a high-dimensional

observation space from a given set of data points sampled from the manifold. We derive

asymptotic expansion and local lower and upper bounds for the maximum reconstruction

error in a small neighborhood of an arbitrary point. The expansion and bounds are defined

in terms of the distance between tangent spaces to the original DM and the Reconstructed

Manifold (RM) at the selected point and its reconstructed value, respectively. We propose

an amplification of the ML, called Tangent Bundle ML, in which proximity is required not

only between the DM and RM but also between their tangent spaces. We present a new

geometrically motivated Grassman&Stiefel Eigenmaps algorithm that solves this problem

and gives a new solution for the ML also.
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1 Introduction

The goal of Dimensionality Reduction (DR) is extracting low-dimensional
structure from high-dimensional data. There exist a number of methods
(techniques) for the DR. Linear DR is well known and uses such techniques as
Principal Component Analysis[34] (PCA) and classical metric Multidimensional
Scaling[18] (MDS). Various Non-linear DR techniques are based on Auto-Encoder
neural networks[30, 31, 38, 49], Self-organizing Maps[37], Topology representing
networks[48], Diffusion Maps[41], Kernel PCA[55], and others.
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A newly emerging direction in the fields of the DR, which has been a subject of
intensive research over the last decades, consists in constructing a family of
DR-algorithms based on studying local structure of a given sampled dataset:
Locally Linear Embedding[52] (LLE); Laplacian Eigenmaps[2] (LE); Hessian
Eigenmaps[21] (HE); ISOmetric MAPing[63] (ISOMAP); Maximum Variance
Unfolding[68] (MVU); Manifold charting[10]; Local Tangent Space Alignment[72,73]

(LTSA), and others. Some of these algorithms (LLE, LE, ISOMAP, MVU) can be
considered in the same framework, based on the Kernel PCA[55] applied to various
data-based kernels[3, 4, 53, 54].

The DR problems are formulated in various ways, and we will give a few different
DR formalizations, including a new formalization proposed in the paper. There is no
generally accepted terminology in the DR; thus, some terms introduced below can be
different from those used in some other works.

1.1 Dimensionality reduction as Data Space (Manifold) Embedding

One formalization of the DR, which is used in most of the above listed papers
and can be referred to as the Sample Embedding problem, is as follows: Given an
input dataset (sample)

Xn = {X1, X2, . . . , Xn} ⊂ X ⊂ Rp, (1)
randomly sampled from an unknown nonlinear Data Space (DS) X embedded in
p-dimensional Euclidean space Rp, find an ‘n-point’ Embedding mapping

h(n) : Xn ⊂ Rp → hn = h(n)(Xn) = {h1, h2, . . . , hn} ⊂ Rq (2)
of the sample Xn to an q-dimensional dataset hn, q < p, which faithfully represents
the high-dimensional sample Xn while inheriting certain subject-driven data
properties like preserving the local data geometry (LLE, LTSA), proximity relations
(LE, HE), geodesic distances (ISOMAP), angles (Conformal Eigenmaps[56];
Conformal and Landmark ISOMAP[60]), etc.

The term ‘faithfully represents’ is not formalized in general, and in various DR
methods it is different due to choosing some optimized cost function L(n)(h1, h2,
. . . , hn|Xn) which defines an ‘evaluation measure’ for the DR and reflects desired
properties of the n-point Embedding mapping h(n) (2). As is pointed out in Ref. [13],
a general view on the DR can be based on a ‘concept of cost functions’. For example,
the cost function

L(n) (h1, h2, . . . , hn |Xn ) =
∑

i,j

(ρ(Xi, Xj)− ‖hi − hj‖)2,

is considered in the classical MDS, here ρ is a chosen metric in the DS X. Note that
the MDS and PCA methods are equivalent when ρ is the Euclidean metric in Rp.

An extehsion of the Sample Embedding, which can be referred to as the Data
Space Embedding problem, is as follows: Given an input dataset (sample) Xn

(1) from the DS X, construct a low-dimensional parameterization of the DS which
produces an Embedding mapping

h : X ⊂ Rp → Y = h(X) ⊂ Rq (3)
from the DS to a Reconstructed Coordinate (Feature) Space Y = h(X), which
preserves specific properties of the DS. Note that the mapping h must also be
defined on new Out-of-Sample (OoS) points Xnew ∈ X/Xn.

Based on some solution h(n) for the Sample Embedding problem from sample
Xn, an emdedding mapping for new OoS points Xnew ∈ X/Xn could certainly be
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constructed as h(n+1)(Xnew) with regard to Sample Embedding h(n+1) applied to
the dataset {Xn ∪Xnew}; however, h(n+1)(Xn) can not coincide in the general case
with the embedding hn = h(n)(Xn) obtained previously for the initial sample Xn.
An ‘OoS extension’ for the algorithms LLE, LE, ISOMAP and MVU, which are
based on the Kernel PCA approach, has been found in Ref. [4] with using
Nyström’s eigendecomposition technique[14,53]. The Cost functions concept[13]

allows constructing an Embedding mapping for the OoS points; other OoS
techniques are proposed in Ref. [24,62], etc.

The definition of the Data Space Embedding problem uses values of the function
h (3) for OoS points; thus, we must define a Data Model describing the DS, and a
Sampling Model offering a way for extracting both the sample Xn and OoS points
from the DS X .

The most popular models in the DR are Manifold Data
Models[12,15,20,26,35,46,47,64,72], in which the DS X is a q-dimensional manifold
embedded in p-dimensional Euclidean space Rp, q < p, and referred to as the Data
Manifold (DM). A motivation of such model consists in the follofing empirical fact:
as a rule, the real-world data presented in high-dimensional spaces is likely to
concentrate in a vicinity of a non-linear submanifold of much lower
dimensionality[15]; this assumption is referred to as Manifold hypothesis or
Manifold assumption. The Data Space Embedding problem with the Manifold
Data Model can be referred to as the Manifold Embedding problem.

In most studies, DM is modeled using a single coordinate chart:

X = {X = f(b) ∈ Rp : b ∈ B ⊂ Rq} ⊂ Rp, (4)

and it is supposed that X is a well-behaved manifold: a coordinate chart f is a
diffeomorphism from an open subset B in Rq to DM X = f(B) with a differentiable
inverse map, and the manifold X has no self-intersections. The set B will referred to
as the Coordinate space,

The Sampling Model is typically defined as a probability measure µ on the σ-
algebra of measurable subsets of the DM X whose support Supp(µ) coincides with
X. In accordance with this model, the dataset Xn (1) and OoS points X ∈ X/Xn

are selected from the DM X independently of each other according to the probability
measure µ.

1.2 Manifold reconstruction in dimensionality reduction

Manifold Embedding is usually a first step in various Intelligent Data Analysis
problems (classification, clustering, etc.): a reduced q-dimensional vector y = h(X)
is used in their procedures instead of an initial p-dimensional vector X.

If the Embedding mapping h (3) in the Manifold Embedding preserves only specific
properties of high-dimensional data, then substantial data losses are possible when
using a reduced q-dimensional vector y = h(X) instead of the initial p-dimensional
vector X. As is pointed out in Ref. [43,44], one objective of the DR is to preserve as
much available information contained in the sample as possible. Under this approach,
the term ‘faithfully represents’ is understood as preserving of such information, and
this means the possibility of reconstructing high-dimensional points X from low-
dimensional ‘embedded’ points h(X). This possibility can be considered as a valid
evaluation measure for the DR procedures[43,44].

To prevent these losses in the general case, an embedding mapping must provide
ability for reconstructing the initial vector X ∈ X from a vector y = h(X) with small
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reconstruction error. Thus, it is necessary to construct a Reconstruction mapping

g : Y g ⊂ Rq → Rp (5)

defined on a domain Y g ⊃ Y = h(X), which determines a reconstructed value

X∗ = (g · h)(X) ≡ g(h(X)) (6)

as a result of successively applying the embedding and reconstruction mappings to
a vector X ∈ X. The Reconstruction mapping g must be defined not only on the
Embedded sample Y n = h(Xn) (with an obvious reconstruction), but also on ‘OoS’
embedded points y = h(X) ∈ Y / Y n obtained by embedding the OoS points
X ∈ X/Xn.

Problems in which a reconstruction mapping is required arise in numerous
applications.

Example 1 concerns a Wing shape optimization problem, which is one of
important problems in aircraft designing. Design variables include a number of
high-dimensional vectors X of dimension p which are detailed descriptions of wing
airfoils. In practical applications, the dimension p varies in the range from 50 to 200;
specific value of p is selected depending on a required accuracy of airfoil description.

Low-dimensional airfoil parameterization[61] is usually constructed in order to
reduce the number of design variables, and Dimensionality Reduction technique is
one of highly powerful methods for such parameterization[6,8]. This technique
constructs a low-dimensional parameterization (Embedding mapping h (3)) of a
given airfoil based on a known dataset consisting of high-dimensional descriptions of
airfoils-prototypes and allows to describe airfoils of aircraft wings by low-dimens-
ional vectors whose dimension q varies in the range from 5 to 10.

The constructed airfoil parameterization determines a low-dimensional design
space, and a wing shape optimization problem is reduced to optimizing some
functional on this space. If low-dimensional airfoil descripion y∗ is a result of some
optimization procedure in the constructed design space, then it is required to
reconstruct a detailed description X∗ = g(y∗) (6) of the ‘optimal’ wing airfoil for the
‘OoS’ value y∗. ¤

Example 2, described in Ref. [16], is devoted to Processing of an Electricity
price curve. Electricity ‘daily’ prices are described by a multidimensional time series
(electricity price curve) Xt = (Xt1, Xt2, . . . , Xt,24)T ∈ R24, t = 1, 2, . . . , T, consisting
of ‘hour-prices’ in the course of day t. Based on X1, X2, . . . , XT , it is necessary to
construct a forecast X∗ for XT+1. Both Embedding and Reconstruction mappings
are used in the Forecasting algorithm[16]:

– LLE[52] is used for solving the Manifold Embedding problem on the basis of
the given ‘daily-prices’ vectors {X1, X2, . . . , XT } ⊂ R24. Denote by h the
constructed LLE-based solution and by {yt = h(Xt) = (yt1, yt2, . . . ,
ytq)T ∈ Rq, t = 1, 2, . . . , T} the embedding results (q = 4 is selected in Ref.
[16] as appropriate dimension of the embeddings).

– Based on a one-dimensional time series {ytk, t = 1, 2, . . . , T}, by using standard
forecasting technique, a forecast Yk for yT+1,k is constructed for k = 1, 2, . . . , q.

– Based on the constructed q-dimensional vector Y ∗ = (Y1, Y2, . . . , Yq)T , a
forecast X∗ = g(Y ∗) for XT+1 is constructed with using LLE-reconstruction
technique[53].
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As is pointed out in Ref. [16] (citations): ‘low-dimensional coordinates to the
high-dimensional space is a necessary step for forecasting’; ‘the reconstruction of high-
dimensional forecasted price curves from low-dimensional prediction is a significant
step for forecasting’; ‘reconstruction accuracy is critical for the application of manifold
learning in the prediction.’ ¤

There are some (though limited number of) methods for reconstruction the DS
from the Reconstructed Coordinate Space Y = h(X). For a specific linear DM, the
reconstruction can be easily made with the PCA. For a nonlinear DM, the constructed
sample-based Auto-Encoder Neural Network determines both the embedding and
reconstruction mappings. LLE reconstruction, which is done in the same manner
as LLE, has been introduced in Ref. [53]. LTSA reconstruction, an interpolation-like
reconstruction, and nonparametric regression reconstruction have been proposed in
Ref. [72].

The Reconstruction mapping g (5) determines a Reconstruction error
δ(X) = ‖X − g(h(X))‖ (7)

at a point X ∈ X. The Reconstruction error can be chosen as an evaluation measure
in the DR: small value of δ(X) means that h(X) well preserves information contained
in X. Thus, the error δ(X) may be considered as an ‘universal quality criterion’[43,44]

in the DR.

1.3 Dimensionality reduction as Manifold Learning

General DR with Manifold Data Model is often referred to as the Manifold
Learning (ML) problems. In this paper, by ML we will mean the DR in which
the term ‘faithfully represents’ has the following specified strong meaning: a low
dimensional representation of the DM must preserve as much information contained
in high-dimensional data as possible. Thus, a specified evaluation measure of DR
quality has to reflect preservation of this information, and the Reconstruction error
may be chosen as such measure.

A strict definition of the ML is as follows: Given an input dataset Xn (1) sampled
from a q-dimensional Data Manifold X (4) covered by a single chart, construct an
ML-solution θ = (h, g) consisting of an Embedding mapping h (3) defined on a
domain of definition Xh ⊃ X and a Reconstruction mapping g (5) defined on a
domain of definition Y g ⊃ Y h = h(Xh), which ensures the approximate equality

X ≈ g(h(X)) for all X ∈ X. (8)
In this definition, the Reconstruction error δ(X) (7), which equals to Euclidean

norm of the residual vector
∆(X) = X − g(h(X)),

is a measure of quality of the ML solution at a point X ∈ X.
The mapping g determines a q-dimensional manifold

Xg = {X = g(y) ∈ Rp : y ∈ Y g ⊂ Rq} (9)
embedded in Rp and covered (parameterized) by a single coordinate chart g defined
on its domain of definition Y g. A constriction of the domain Y g on the set

Y θ = h(X) ⊂ Y g (10)
determines a q-dimensional Reconstructed Manifold (RM)

Xθ = {X = g(y) ∈ Rp : y ∈ Y θ ⊂ Rq} (11)
embedded in Rp and parameterized by the chart g defined on Y θ. The coordinate
space Y θ of the RM Xθ will be called the Reconstructed Coordinate Space.
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The solution θ = (h, g) determines the mapping
rθ(X) = g(h(X)) (12)

from the DM X into the RM Xθ = rθ(X), and the approximate equalities (8) can
be considered as Manifold proximity property

X ≈ Xθ, (13)
meaning that the RM Xθ accurately reconstructs (estimates) the DM X from the
sample Xn. Thus, the ML solution θ = (h, g) allows reconstructing the unknown DM
X by the parameterized RM Xθ, whereas the Embedding Manifold solution h (3)
reconstructs a parameterization of the DM only.

From Statistical point of view, the defined ML problem may be considered as
a Statistical Estimation Problem: there is an unknown object X (4) (smooth q-
dimensional Data Manifold in Rp covered by a single chart) and a finite dataset Xn

randomly sampled from X. Based on the sample, it is required to construct an
estimator Xθ (11) (also a q-dimensional manifold in Rp covered by a single chart and
constructed from the sample) for X; this estimator is determined by a pair θ = (h, g)
of mappings (3), (5). Quality of a solution θ = (h, g) is defined as accuracy in
the approximated equality (13), and the Reconstruction error δ(X) (7) is a quality
measure at a specific point X ∈ X.

The defined ML Problem differs from the Manifold approximation problem, also
called Manifold reconstruction, which is as follows: Given a finite dataset randomly
sampled from an unknown manifold, represent the manifold geometry by some
geometrical structure in the original ambient space Rp, without any ‘global
parameterization’ and any mapping from the initial manifold to the approximated
structure. For the latter problem, some solutions are known such as approximations
by a simplicial complex[23] or by finitely many affine subspaces called ‘flats’[36].

1.4 Short review of the paper results

The Reconstruction error δ(X) (7) can be directly computed for sample points X ∈
Xn, and for OoS point X ∈ X\Xn it describes the generalization ability of the
considered ML solution (h, g) at a specific point X. In Section 2, asymptotic expansion
and local lower and upper bounds are obtained for the maximum reconstruction error
in a small neighborhood of an arbitrary point X ∈ X. The expansion and lower and
upper bounds are defined in terms of the distance between tangent spaces to the DM
X (4) and the RM Xθ (11) at the considered point X ∈ X and the reconstructed
point rθ(X) ∈ Xθ (12), respectively. It follows from these results that the greater
the distances between these tangent spaces, the lower the local generalization ability
of the considered ML procedure.

Thus, it is natural to require that the ML procedure (h, g) ensures not only
proximity (8) between the points X ∈ X and their reconstructed values rθ(X) (12)
but also proximity between the corresponding tangent spaces. A statement of the
extended ML problem, which may be referred to as the Tangent Bundle
Manifold Learning (TBML) problem and includes a requirement of tangent
spaces proximity, is proposed in Section 3.

A solution of the TBML based on the proposed Grassmann&Stiefel
Eigenmaps (GSE) approach, which also gives a new solution for the ML, is
described in Section 4. Results of performed comparative numerical experiments are
presented in Section 5.

1.5 List of mathematical notations
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This subsection contains a list of mathematical notations used throughout the
paper:

X – Data Manifold; q-dimensional manifold embedded in p-dimensional ambient
space Rp;

Xn = {X1, X2, . . . , Xn} ⊂ X – finite dataset (sample) randomly sampled from
the X;

h – Embedding mapping from a domain of definition Xh ⊃ X to Rq;
Y n = h(Xn) = {y1, y2, . . . , yn} – the result of sample’s embedding;
g – Reconstruction mapping from a domain of definition Y g ⊃ Y h = h(Xh)

to Rp;
θ = (h, g) – ML solution;
Y θ = h(X) – low dimensional image of Data Manifold; Reconstructed Coordinate

Space;
Xθ = {X = g(y) ∈ Rp : y ∈ Y θ ⊂ Rq} – Reconstructed Manifold;
rθ(X) = g(h(X)) ∈ Xθ = rθ(X) – reconstructed value of the point X ∈ X;
δθ(X) = ‖X − g(h(X))‖ – Reconstructed error;
L(X) – tangent space to the Data Manifold at the point X ∈ X;
Lθ(rθ(X)) – tangent space to the Reconstructed Manifold at the point rθ(X) ∈

Xθ.

2 Local Generalization Ability in Manifold Learning

2.1 Basic concepts and notations

Let X0 ∈ X be some selected point, and let

δθ(X0, ε) = max{δθ(X) : X ∈ Uε(X0)} (14)

be the maximum reconstruction error in the ε-neighborhood

Uε(X0) = {X ∈ X : ‖X −X0‖ 6 ε}
of the point X0. The quantity δθ(X0, ε) (14) characterizes the local generalization
ability of the procedure θ in the ε-neighborhood of the point X0.

As before, we will assume in the paper that X is a well-behaved manifold and
has also the following additional properties: Jacobian (p × q matrix) Jf (b) of the
diffeomorphism f has rank q for all b ∈ B, and there are positive constants
C, C ′, C ′′ such that if two arbitrary points X = f(b) and X ′ = f(b′) from X satisfy
the condition ‖X −X ′‖ < C then the inequalities

C ′ × ‖b− b′‖ 6 ‖X −X ′‖ 6 C ′′ × ‖b− b′‖
hold true. Therefore, the DM X has a tube Tubeε(X) of some positive radius ε (that
is, the points from an ε-neighborhood of X have a single projection onto X), whence
comes that X has no self-intersections.

Let θ = (h, g) be some ML-solution. If the DM X lies in a positive radius tube
Tube (Xg) of the manifold Xg (9), one can consider a new solution θ(g) = (hg, g),
where

hg(X) = arg miny{‖g(y)−X‖ : y ∈ Y g}; (15)

i.e., the point rθ(g)(X) = g(hg(X)) ∈ Xg is the projection of the point X ∈ X ⊂
Tube (Xg) onto the manifold Xg (9). The solution θ(g) determines also the
Reconstructed Manifold

Xθ(g) = {X = g(y) ∈ Rp : y ∈ Y θ(g) ⊂ Rq}
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with the Reconstructed Coordinate Space Y θ(g) = hg(X).
By definition, we have the inequality

‖X − rθ(g)(X)‖ 6 ‖X − rθ(X)‖ for all X ∈ X.

Hence, the new solution θ(g) has smaller reconstruction error and thus improves
the initial solution θ. Because of this, in this section we will study the generalization
ability of the improved solution θ(g).

To formulate the obtained results, introduce some notations. Let p × q matrices
Jf (b) and Jg(y) be Jacobians of the mappings f (4) and g (5), respectively. The
q-dimensional linear subspaces in Rp

L(X) = Span(Jf (b)),

Lg(y) = Span(Jg(y)),
(16)

which are spanned by columns of these Jacobians, are the tangent spaces to the
manifolds X and Xθ(g) at the points X = f(b) ∈ X and g(y) ∈ Xθ(g), respectively;
here b ∈ B and y ∈ Y θ(g).

Let X0 = f(b0) ∈ X be an arbitrary point, b0 ∈ B, and let y0 = hg(X0). Denote
by ζ1, ζ2, . . . , ζq the principal angles[25,32,33] between the subspaces L(X0) and Lg(y0)
arranged in ascending order:

0 6 ζ1 6 ζ2 6 . . . 6 ζq 6 π/2, (17)
and denote {tf,1, tf,2, . . . , tf,q} and {tg,1, tg,2, . . . , tg,q} the principal vectors in the
subspaces L(X0) and Lg(y0), respectively. These vectors determine orthonormal bases
for these subspaces and satisfy the relations

(tf,i, tg,j) = δij × cos(ζj), i, j = 1, 2, . . . , q, (18)
hereinafter (·,·) denotes the scalar product in Rp. Let

tf,g,j = tf,j − tg,j × cos(ζj) ≡ π⊥(y0)× tf,j , j = 1, 2, . . . , q, (19)
be projections of the principal vectors {tf,1, tf,2, . . . , tf,q} onto the subspace (Lg(y0))⊥.
It follows from (18), (19) that these vectors are orthogonal and satisfy the relations

(tf,g,i, tf,g,j) = δij × ‖tf,g,j‖2 = δij × sin2(ζj), i, j = 1, 2, . . . , q. (20)
Denote by L∗ ⊆ (Lg(y0))⊥ a linear space spanned by the vectors {tf,g,1, tf,g,2,

. . . , tf,g,q}; that is, the linear space L∗ is the orthogonal complement to the projection
of the tangent space L(X0) onto the tangent space Lg(y0). Let q∗ = q − k∗ be a
dimension of the L∗, where

k∗ = max{k : ζj = 0, j = 1, 2, . . . , k}
under ζ1 = 0; otherwise put k∗ = 0. Note that if k∗ = q (that is, ζq = 0 and the
subspaces L(X0) and Lg(y0) coincide), then q∗ = k∗ − q = 0 and L∗ is a degenerate
linear space. The unit vectors

ej = tf,g,k∗+j × sin−1(ζk∗+j), j = 1, 2, . . . , q∗,
form an orthonormal basis in L∗, see (20).

Denote by Aj = (X0 − rθ(g)(X0), ej), j = 1, 2, . . . , q∗, the components of the
projection

A = πL∗(∆(X0)) = (A1, A2, . . . , Aq∗)T (21)

of the resudial vector ∆(X0) onto the linear space L∗.

2.2 The theorem on the generalization ability

Theorem 1. Let h (3) and g (5) be smooth mappings whose Jacobians have
rank q. Let the DM X lies in a tube Tube (Xg) of the RM Xg of a positive radius.
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Then we have the following asymptotic expansion of the local maximum
reconstruction error δθ(g)(X0, ε):

δθ(g)(X0, ε) = δθ(g)(X0) + ε× δ∗(X0) + o(ε), (22)
as ε → 0; here

δ∗(X0) =





sin(ζq), if δθ(g)(X0) = 0,

1
δθ(g)(X0)

(
q∗∑

j=1

A2
j × sin2(ζk∗+j)

)1/2

, if δθ(g)(X0) 6= 0,
(23)

hereinafter, the o(·) symbol in the vector case is understood componentwise.
Proof. Let X = f(b) ∈ Uε(X0) be an arbitrary point; here b ∈ B. Denote y =
hg(X), then g(y) = rθ(g)(X) and the Taylor formula yields

g(y) = rθ(g)(X0) + Jg(y0)× (y − y0) + O(‖X −X0‖2). (24)
From the definition (15), the value y minimizes the quadtatic form

‖X − rθ(g)(X0)− Jg(y0)× (y − y0) + O(‖X −X0‖2)‖2,
thus, y is the Least Squares solution of the minimization problem (15) and can be
written in the form
y = y0 +((Jg(y0))T ×Jg(y0))−1× (Jg(y0))T × (X− rθ(g)(X0))+O(‖X−X0‖2), (25)

and the vector (X − rθ(g)(X)) is orthogonal to the linear space Lg(y):

X − rθ(g)(X) ∈ (Lg(y))⊥. (26)
Let

Jg(y) = Qg(y)×Diagg(y)× (Vg(y))T (27)

be the Singular Value Decomposition (SVD) of the p× q matrix Jg(y); here Qg(y) is
a p× q orthogonal matrix, Diagg(y) and Vg(y) are nondegenerate q × q diagonal and
orthogonal matrices, respectively. Substituing (25) and (27) in (24), we get

rθ(g)(X) = rθ(g)(X0) + π(y0)× (X − rθ(g)(X0)) + O(‖X −X0‖2),
where π(y0) = Qg(y0)× (Qg(y0))T is a projector onto the linear space Lg(y0) (16).

Taking into account the relation (26) at the point X0, we obtain
π(y0)×(X−rθ(g)(X0))=π(y0)×(X−X0)+π(y0)×(X0−rθ(g)(X0))=π(y0)×(X−X0),
hence, (24) takes the form

rθ(g)(X = rθ(g)(X0) + π(y0)× (X −X0) + O(‖X −X0‖2),
whence comes the relation

X − rθ(g)(X) = (X0−rθ(g)(X0))+(X −X0)−π(y0)× (X −X0)+O(‖X −X0‖2)
= ∆(X0) + π⊥(y0)× (X −X0) + O(‖X −X0‖2),

(28)

where π⊥(y0) = I − π(y0) is a projector onto the (p − q)-dimensional linear space
(Lg(y0))⊥.

Let
Jf (b) = Qf (b)×Diagf (b)× (Vf (b))T (29)

be the SVD-decomposition of the p×q matrix Jf (b), where Qf (b) is a p×q orthogonal
matrix.

Consider the q × q matrix (Qg(y0))T ×Qf (b0), and write its SVD-decomposition
in the form

(Qg(y0))T ×Qf (b0) = O1 ×Diag(cos(ζ))× (O2)T ,
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where O1 and O2 are q × q orthogonal matrices. The diagonal entries of the
diagonal matrix Diag(cos(ζ)) are cosines cos(ζq), cos(ζq−1), . . . , cos(ζ1) of principal
angles between the subspaces L(X0) and Lg(y0) arranged in ascending order (17),
and the columns of the p× q orthogonal matrices

Tf = Qf (b0)×O2 (30)
and Qg(y0)×O1 are orthonormal bases of these subspaces consisting of the principal
vectors {tf,1, tf,2, . . . , tf,q} and {tg,1, tg,2, . . . , tg,q}, respectively. Denote

µ(X) = (O2)T ×Diagf (b0)× (Vf (b0))T × (b− b0) ≡ (µ1, µ2, . . . , µq)T ∈ Rq,

β(X) = Tf × µ(X) ∈ Rp. (31)

From the Taylor series expansion
X = X0 + Jf (b0)× (b− b0) + O(‖X −X0‖2),

taking into account (29) and the notations (30), (31), we obtain
X −X0 = β(X) + O(‖X −X0‖2), (32)

whence comes that the vectors defined in (31) satisfy the relations
‖β(X)‖2 = ‖µ(X)‖2 = ‖X −X0‖2 + O(‖X −X0‖3).

Denote

α2
0(X) =

k∗∑

j=1

µ2
j (X), αj(X) = µk∗+j , j = 1, 2, . . . , q∗;

thus,

α2
0(X) +

k∗∑

j=1

α2
j (X) = ‖X −X0‖2 + O(‖X −X0‖3). (33)

It also follows from (20) and (32) that

π⊥(y0)× β(X) =
q∗∑

j=1

αj(X)× sin(ζk∗+j)× ej ,

thus

π⊥(y0)× (X −X0) =
q∗∑

j=1

αj(X)× sin(ζk∗+j)× ej + O(‖X −X0‖2),

hence, we get from the notation (21) and relation (28) that
∆(X) = X − rθ(g)(X) = ∆∗(X) + O(‖X −X0‖2);

here

∆∗(X) = A∗ +
q∗∑

j=1

(Aj + αj(X)× sin(ζk∗+j))× ej

is the main term of the residual vector ∆(X), and the vector
A∗ = ∆(X0)− πL∗(∆(X0)) = ∆(X0)−A

is an orthogonal (p− q)-dimensional complement to the vector A (21). Hence,
δθ(g)(X) = ‖∆(X)‖ = ‖∆∗(X) + O(‖X −X0‖2)‖,

and
δθ(g)(X0, ε) = max{‖∆∗(X) + O(‖X −X0‖2)‖ : ‖X −X0‖ 6 ε}.
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Taking into account (33), we write this relation as

δθ(g)(X0, ε) = max





∥∥∥∥∥∥
A∗ +

q∗∑

j=1

(Aj + ε× αj × sin(ζk∗+j))× ej + O
(
ε2

)
∥∥∥∥∥∥

:

α2
0 +

q∗∑

j=1

α2
j 6 1 + O (ε)



 ,

(34)

here we use normalized variables α0 = α0(X)/ε and αj = αj(X)/ε, j = 1, 2, . . . , q∗.
To find (34), consider first the problem of maximizing the ‘main term’ in (34),

which consists in maximizing the quadratic form

‖∆∗(X)‖2 = ‖A∗‖2 +
q∗∑

j=1

(Aj + ε× αj × sin(ζk∗+j))2 (35)

under the condition

α2
0 +

q∗∑

j=1

α2
j 6 1,

here we used the orthogonal property A∗⊥L∗.
We may take the values α1, α2, . . . αq∗ to meet the conditions sgn(αj) = sgn(Aj),

j = 1, 2, . . . , q∗, then the quantity (35) will increase. Hence, the maximum value of

D2(α1, α2, . . . αq∗) =
q∗∑

j=1

(Aj + ε× αj × sin(ζk∗+j))2 (36)

will be reached if α0 = 0 and α1, α2, . . . αq∗ satisfy the condition
q∗∑

j=1

α2
j = 1, (37)

and we will maximize the quadratic form (36) over α1, α2, . . . αq∗ under the condition
(37).

Consider separately two cases for the vector A (21):

Case 1 : A = 0,

Case 2 : A 6= 0;

the Case 1 includes also the case δθ(g)(X0) = 0.
In Case 1, the optimized function (36) takes the form

D2(α1, α2, . . . αq∗) = ε2 ×
q∗∑

j=1

α2
j × sin2(ζk∗+j),

whose maximum is
max D2(α1, α2, . . . αq∗) = ε2 × sin2(ζq),

whence comes that
max ‖∆∗(X)‖2 = δ2

θ(g)(X0) + ε2 × sin2(ζq) (38)
in Case 1; here we use the relation A∗ = ∆(X0) in the Case 1.

In Case 2, consider the Lagrange function

D2(α1, α2, . . . , αq∗ ;λ) =
q∗∑

j=1

(Aj + ε× αj × sin(ζk∗+j))2 + λ×

1−

q∗∑

j=1

α2
j


 ,
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whose optimization gives the following values for variables α1, α2, . . . , αq∗ :

αj = ε× Aj × sin(ζk∗+j)
λ− ε2 × sin2(ζk∗+j)

, j = 1, 2, . . . , q∗, (39)

where λ is a solution of the equation

ε2 ×
q∗∑

j=1

A2
j × sin2(ζk∗+j)(

λ− ε2 × sin2(ζk∗+j)
)2 = 1.

Denote x = ε/λ; then this equation takes the form

x2 ×
q∗∑

j=1

A2
j × sin2(ζk∗+j)(

1− ε× x× sin2(ζk∗+j)
)2 = 1,

whose solution has the folloving expansion for small ε:

x = x0 + ε× x1 + o(ε) ≡



q∗∑

j=1

A2
j × sin2(ζk∗+j)



−1/2

− ε×

q∗∑
j=1

A2
j × sin4(ζk∗+j)

(
q∗∑

j=1

A2
j × sin2(ζk∗+j)

)2 + o(ε),

(40)

which correspondes to the maximum value in (36).
Substituting the values (39) and (40) into (36), we obtain

max D2(α1, α2, . . . αq∗) =
q∗∑

j=1

A2
j(

1− ε× x× sin2(ζk∗+j)
)2

= ‖A‖2 + 2ε×



q∗∑

j=1

A2
j × sin2(ζk∗+j)




1/2

+ ε2 ×

q∗∑
j=1

A2
j × sin4(ζk∗+j)

q∗∑
j=1

A2
j × sin2(ζk∗+j)

+ o(ε2),

whence comes

max ‖∆∗(X)‖2 = δ2
θ(g)(X0) + 2ε×




q∗∑

j=1

A2
j × sin2(ζk∗+j)




1/2

+ ε2 ×

q∗∑
j=1

A2
j × sin4(ζk∗+j)

q∗∑
j=1

A2
j × sin2(ζk∗+j)

+ o(ε2)

(41)

in Case 2; here we used the equality

δ2
θ(g)(X0) = ‖A∗‖2 + ‖A‖2.
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It follows from (34) that

δθ(g)(X0, ε) = max{‖∆∗(X)‖ :
q∗∑

j=1

α2
j 6 1}+ o(ε). (42)

Consider separately two cases for the Reconstruction error δθ(g)(X0) at the point
X0:

Case 1∗ : δθ(g)(X0) = 0,

Case 2∗ : δθ(g)(X0) 6= 0;

note that A = 0 in Case 1∗.
It follows from (38) that in Case 1∗

max ‖∆∗(X)‖ = ε× sin(ζq). (43)
Taking into account (41), write the asymptotic expansion of max ‖∆∗(X)‖ in Case

2∗:

max ‖∆∗(X)‖ = δθ(g)(X0) + ε× 1
δθ(g)(X0)




q∗∑

j=1

A2
j × sin2(ζk∗+j)




1/2

+ O(ε2). (44)

Combining relations (42)–(44), we get the relations (22) and (23), which prove
Theorem 1. ¤

2.3 Corollaries of the theorem

From the proof of Theorem 1, one can derive some corollaries. The
q-dimensional tangent spaces L(X0) and Lg(y0) (16) will be treated as elements of
the Grassmann manifold[70] Grass(p, q) composed of q-dimensional linear subspaces
in Rp. The maximum principal angle ζq between these subspaces defines the metric

dP,2(L(X0), Lg(y0)) = sin(ζq) = ‖PL − PL∗‖2
on Grassmann manifold called the projection metric in 2-norm[66], or simply the
projection 2-norm[22,28]; here PL and PL∗ are projectors onto the linear spaces L(X0)
and Lg(y0). In Statistics, this metric is called the Min Correlation Metric[25,33].

If ζq > 0, denote by ηmin = sin(ζ1)/ sin(ζq) 6 1 and ηmin + = sin(ζk∗+1)/ sin(ζq) 6
1 the sinus of the minimal principal angle ζ1 and sinus of the minimal positive principal
angle ζk∗+1 normalized to the sinus of the maximal principal angle ζq, respectively;
otherwise put ηmin = ηmin + = 0.

Obvious inequalities ‖A‖ 6 δθ(g)(X0) and

‖A‖ × sin(ζk∗+1) 6




q∗∑

j=1

A2
j × sin2(ζk∗+j)




1/2

6 ‖A‖ × sin(ζq), (45)

imply the following Corollary 1.
Corollary 1 of Theorem 1. For X0 ∈ X under ε → 0, we have the following

asymptotic upper and lower bounds for the local maximum reconstruction error:
δθ(g)(X0, ε) 6 δθ(g)(X0) + ε× γ × dP,2(L(X0), Lg(y0)) + o(ε),

δθ(g)(X0, ε) > δθ(g)(X0) + ε× ηmin + × γ × dP,2(L(X0), Lg(y0)) + o(ε),
(46)

where γ is cosine of the angle between the residual vector ∆(X0) = X0 − rθ(g)(X0)
and its projection onto the linear space L∗; if ∆(X0) = 0, we put γ = 1.

From (45), (46), we get a rougher upper bound
δθ(g)(X0, ε) 6 δθ(g)(X0) + ε× dP,2(L(X0), Lg(y0)) + o(ε).
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From the relations (28), we get Corollary 2, which indicates to what extent the
mapping rθ(g) preserves the local structure of the Data manifold X and characterizes
the local non-isometricity of this mapping.

Corollary 2 of Theorem 1. For X ∈ Uε(X0) and ε → 0, we have the following
asymptotic inequalities:
‖(X−X0)−(rθ(g)(X)−rθ(g)(X0))‖6‖X−X0‖×dP,2(L(X0), Lg(y0))+o(‖X−X0‖);
‖(X−X0)−(rθ(g)(X)−rθ(g)(X0))‖>‖X−X0‖×ηmin×dP,2(L(X0), Lg(y0))+o(‖X−X0‖);
‖rθ(g)(X)−rθ(g)(X0)‖6‖X−X0‖×

√
1−η2

min×d2
P,2(L(X0), Lg(y0))+o(‖X−X0‖);

‖rθ(g)(X)−rθ(g)(X0)‖>‖X−X0‖×
√

1−d2
P,2(L(X0), Lg(y0))+o(‖X−X0‖).

It follows from Theorem 1 and its corollaries that the greater the distance between
the tangent spaces L(X0) and Lg(y0), the lower the local generalization ability of the
solution θ becomes, the poorer the local structure is preserved, and the poorer the
local isometricity properties are ensured at the point X0 ∈ X.

3 Tangent Bundle Manifold Learning

Denote by
Lθ(rθ(X)) = Lg(h(X))

the tangent space to the RM Xθ at the point rθ(X) ∈ Xθ. Thus, it is natural to
require in the ML that the procedure θ ensures not only proximity (8) between all
the points X ∈ X and their images rθ(X) ∈ Xθ but also proximity

L(X) ≈ Lθ(rθ(X)) (47)
between the tangent spaces L(X) ∈ Grass(p, q) and Lθ(rθ(X)) ∈ Grass(p, q) in some
selected metric on the Grassmann manifold Grass(p, q). The approximate equalities
(47) may be treated as Tangent proximity between the manifolds X and Xθ.

Requirement of the Tangent proximity in the ML arises in various applications in
which ML solution is an intermediate step for some Intelligent Data Analysis problem.

Example 3. Assume that we have to optimize some functional υ(X)
depending on a p-dimensional vector X lying in a q-dimensional DM X (4) in Rp,
q < p, covered by a single chart f . By definition, this problems is equivalent to the
optimization problem for the functional v(b) ≡ υ(f(b)) defined on a q-dimensional
domain (Coordinate space) B.

In applications, an analytical description of the DM X may be unknown, and
only a sample Xn from X is available (see Example 1 concerning Wing shape
optimization). Based on some solution θ = (h, g) for the ML, the DM X can be
approximated by the RM Xθ (11) providing the approximate equalities (8) and
(13). If the solution θ ensures also the additional ‘functional’ proximity condition

υ(rθ(X)) ≈ υ(X), (48)
the initial optimization problem for υ(X) can be replaced by an optimization problem
for the sample-based functional υθ(X) = υ(rθ(X)). An amplification of the ML with
the functional proximity requirements like (48), called the Functional DR (FDR),
was stated in Ref. [40]; a neural network based solution for the FDR was proposed
in Ref. [7].

The sample-based functional υθ(X) can be written in the form
υθ(X) = υθ(g(y)) ≡ vθ(y), y = h(X);
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hence, the initial optimization problem in Rp amounts to the reduced optimization
problem for the functional vθ(y) depending on the q-dimensional variable y ∈ Y θ ⊂
Rq belonging to the Reconstructed Coordinate Space Y θ (10).

To ensure closeness between specific iterative optimization processes induced by
the same optimization gradient-based method applied to the functionals v(b) and
vθ(y), respectively, it is required to guarantee accurate reconstruction of both the
design space X (8), (13) (with FDR requirement (48)) and its tangent spaces {L(X) :
X ∈ X} (47). ¤

In the Manifold theory[42,45], the set
TB(X) = {(X, L(X)) ∈ X ×Grass(p, q) : X ∈ X},

which is composed of points of the manifold X equipped by tangent spaces at these
points, is known as the Tangent Bundle of the manifold X. Thus, accurate
reconstruction of the DM X from the sample, which ensures accurate reconstruction
of its tangent spaces too, can be considered as reconstruction of the Tangent Bundle
TB(X).

By the above reasons, we propose an amplification of the ML, consisting in
accurate reconstruction of the tangent bundle TB(X) from the sample Xn, which
will be referred to as the Tangent Bundle Manifold Learning (TBML) problem.

A strict definition of the TBML is as follows: Given an input dataset Xn (1)
sampled from a q-dimensional DM X (4) covered by a single chart, construct a
TBML-solution θ = (h, g) consisting of an Embedding mapping h (3) and a
Reconstruction mapping g (5) which determines the Reconstructed Tangent
Bundle

TBθ(Xθ) = {(X ′, Lθ(X ′)) : X ′ ∈ Xθ} ≡ {(g(y), Lg(y)) : y ∈ Y θ = h(X)}
of the manifold Xθ (11) and ensures its proximity to the Tangent bundle TB(X):

TB(X) ≈ TBθ(Xθ), (49)
which means both the Manifold proximity X ≈ Xθ (13) and the Tangent proximity
L = {L(X), X ∈ X} ≈ Lθ = {Lθ(X ′), X ′ ∈ Xθ} ≡ {Lg(y) : y ∈ Y θ = h(X)}; (50)

the latter proximity means proximity (47) for all the points X ∈ X in some selected
metric on the Grassmann manifold Grass(p, q).

Note, that the sets L and Lθ are q-dimensional submanifolds in the Grassmann
manifold Grass(p, q); we will call them the Tangent Manifold and Reconstructed
Tangent Manifold, respectively. The Tangent proximity (50) means that the linear
spaces Lθ(rθ(X)) = Lg(h(X)) ∈ Lθ accurately reconstruct the linear spaces L(X) ∈
L.

From the Statistical point of view, the defined TBML may also be considered as
the following Estimation Problem: from a finite dataset Xn randomly sampled from
smooth q-dimensional manifold X with Tangent manifold L, estimate X and L.

Note. The term ‘tangent bundle’ is used in the ML for various purposes: as
the approximation of manifold shape from the data in Ref. [23]; for geometric
interpretation of the Contractive Auto-Encoder[50] algorithm in Ref. [51]; as the
name of the ‘Tangent Bundle Approximation’ algorithm for the Tangent Space
Learning Problem in Ref. [57,58,59], etc. The above given TBML definion is new
and different from all known use of this term in the ML.
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4 Grassman&Stiefel Eigenmaps Algorithm

This section describes the proposed solution for the TBML, called
Grassman&Stiefel Eigenmaps (GSE), presented by the below described GSE-
algorithm.

4.1 Preliminaries

Hereinafter, by numbers {εi > 0, i = 1, 2, . . .} we denote the algorithm parameters.
The GSE, as well as other ‘local’ algorithms[15, 47], includes the following standard
auxiliary stages, in which:

– For arbitrary point X ∈ X, ε1-ball UE(X) centered at X is constructed as
follows:

UE(X) = {X ′ ∈ Xn : ‖X ′ −X‖ < ε1} for sample points X ∈ Xn; if X is OoS
point (X /∈ Xn), X is included in the UE(X) also.

Following Ref. [2], define the Euclidean ‘heat’ kernel
KE(X, X ′) = K0(X, X ′)× exp{−‖ε2 × (X −X ′)‖2}, (51)

where K0(X, X ′) = 1 if X ∈ UE(X ′) and X ′ ∈ UE(X), and K0(X, X ′) = 0
otherwise.

– The PCA-based approximations LPCA(X) for the tangent spaces L(X) are
constructed as follows. By applying the Weighted PCA[39] with the weights
(51) to the set UE(X), the ordered eigenvalues λ1(X) > λ2(X) > . . . > λp(X)
and the corresponding p-dimensional orthonormal principal vectors are
constructed.

Define the orthogonal p× q matrix QPCA(X) with the columns consisting of the
first q principal vectors, and denote

LPCA(X) = Span(QPCA(X)) ∈ Grass(p, q) (52)
the linear space spanned by columns of the QPCA(X); this linear space can be
considered as the PCA-approximation of the tangent space L(X).

Note. In Ref. [29,65] and others works, various methods for a choice of the local
neighborhoods for applying the PCA are proposed.

Denote
Xh = {X ∈ Rp : λq(X) > ε3};

this set will be the domain of definition of the built in the future Embedding mapping
h (3).

In what follows, we assume that the DM X is well sampled to provide the inclusion
X ⊂ Xh. If X ∈ Xh and the neighborhood UE(X) is small enough, then[1]

L(X) ≈ LPCA(X). (53)
In the paper, we will consider the aggregate kernel

K(X, X ′) = KE(X, X ′)×KG(X, X ′), (54)
in which
KG(X, X ′) = KBC(LPCA(X), LPCA(X ′)) = Det2[(QPCA(X))T ×QPCA(X ′)]; (55)

here KBC(·,·) is the Binet-Cauchy kernel[28] on the Grassmann manifold Grass(p, q)
induced by the Binet-Cauchy metric[28,69]

dBC(LPCA(X), LPCA(X ′)) = {1−Det2[(QPCA(X))T ×QPCA(X ′)]}1/2 (56)
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on the Grass(p, q).

Note. Among all known metrics on the Grassmann manifold Grass(p, q), are
only two metrics between the linear spaces L,L′ ∈ Grass(p, q) that induce
corresponding kernels on the Grassmann manifold: the Binet-Cauchy metric dBC

(56) and the Projection metric[28] dP,F (L,L′) = 2−1/2 × ‖PL − PL′‖F , also called
the Projection F-norm[22] and Chordal distance[17]. There are other reasons also to
use the Binet-Cauchy metric (56) and kernel KG(X, X ′) (55) in the GSE-algorithm.

The aggregate kernel (54) reflects not only geometrical nearness between X and
X ′ but also nearness between the linear spaces LPCA(X) and LPCA(X ′), whence
comes, when (53), a nearness between the tangent spaces L(X) and L(X ′).

The rest of this section is organized as follows. First, we describe a structure
and give an justification of the GSE (Subsection 4.2). The next subsections 4.3–4.5
contain the details of the GSE algorithm. Subsection 4.6 presents some properties of
this algorithm.

4.2 Structure and justification of the GSE

The GSE consists of two successively performed main parts:

– Approximation of the Tangent manifold. A sample-based submanifold

LH = {LH(X), X ∈ X} ⊂ Grass(p, q)

of the Grassmann manifold Grass(p, q) consisting of the linear spaces LH(X) is
constructed to approximate the Tangent manifold L. The submanifold LH is
defined by the family H = {H(X), X ∈ X} consisting of the p × q matrices
H(X) smoothly depending on X ∈ X: the linear space LH(X) = Span(H(X))
is spanned by columns of the matrix H(X).

– Reconstructing the Tangent Bundle of the Data Manifold. Given the
constructed submanifold LH , TBML-solution θ is constructed in such a way
to ensure the following properties: the RM Xθ (11) approximates the DM X
and the Reconstructed Tangent Manifold Lθ close to the given submanifold
LH (which, in turn, close by construction to the Tangent manifold L), whence
comes the Tangent bundle proximity.

Describe briefly the idea and justification of the proposed GSE-algorithm.

Approximation of the Tangent manifold. Given the constructed PCA-based
linear spaces LPCA(X) (52), the matrices H(X) are constructed to meet the relations

LH(X) = LPCA(X)

for all X ∈ Xh; whence, when (53), comes the required proximity

LH(X) ≈ L(X). (57)

Let Stief(p, q) denotes non-compact Stiefel manifold[22,45], consisting of all tall-
skinny p× q matrices M with Rank(M) = q, q 6 p. To achieve a smootheness of the
mapping

H : X ∈ Xh → H(X) ∈ Stief(p, q)

defined on the domain Xh ⊂ Rp, the preliminary matrix set Hn ⊂ Stief(p, q)
consisting of the matrices Hi ∈ Stief(p, q) that meet the constraints

Span(Hi) = LPCA(Xi), i = 1, 2, . . . , n, (58)
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is chosen to minimize the quadratic form

∆n(Hn) =
1
2

n∑

i,j=1

K (Xi, Xj)× ‖Hi −Hj‖2F (59)

under the normalizing constraint
1
K

∑n

i=1
K(Xi)× (HT

i ×Hi) = Iq; (60)

here Iq is q × q identity matrix, and

K(X) =
∑n

j=1
K(X, Xj), i = 1, 2, . . . , n; K =

∑n

i=1
K(Xi).

Then, based on the constructed matrix set Hn, the value H(X) ∈ Stief(p, q) for
arbitrary point X that meets the constraint

Span(H(X)) = LPCA(X), (61)

is constructed by minimizing the quadratic form

∆H(H(X)) =
∑n

j=1
K (X, Xj)× ‖H (X)−Hj‖2F . (62)

The solutions of the optimization problems (59) and (62) are described in the
Subsection 4.3.

Reconstructing the Tangent Bundle of the Data Manifold. The desired
mappings h (3) and g (5) will build in the future in such a way that Jacobian Jg(h(X))
of the mapping g(y) at the point y = h(X) is close to the matrix H(X):

Jg(h(X)) ≈ H(X) (63)

for all the points X ∈ X. The Taylor series expansion of the function g(y):

g(y′)− g(y) ≈ Jg(y)× (y′ − y) (64)

for near points y, y′ ∈ Y g, under the desired condition (63), gives the following relation

g(h(X ′))− g(h(X)) ≈ H(X)× (h(X ′)− h(X)) (65)

for near points X, X ′ ∈ X. Under the desired conditions g(h(X)) ≈ X (8), from here
comes the relation

X ′ −X ≈ H(X)× (h(X ′)− h(X)) (66)

for near points X, X ′ ∈ X. Under the already constructed family H, these
approximate equalities can be considered as regression equations for the embeddings
h(X).

At first, consider the regression equations (66) for near sample points X, X ′ ∈ Xn

and compute the preliminary vector set hn = {h1, h2, . . . , hn} ⊂ Rq as standard least
squares solution which minimizes the weighted residual

∆n(hn) =
∑n

i,j=1
K (Xi, Xj)× |(Xj −Xi)−H (Xi)× (hj − hi)|2 (67)

under natural normalizing constraint

h1 + h2 + . . . + hn = 0 ∈ Rq. (68)

Then, under the already constructed vector set hn, choose the value h(X) for
arbitrary point X ∈ X by minimizing the weighted residual

∆h(h(X)) =
∑n

j=1
K (X, Xj)× |(Xj −X)−H (X)× (hj − h (X))|2 . (69)

The solutions of the optimization problems (67) and (69) will be given in the
Subsection 4.4.
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In the Subsection 4.5, the nearness measure (kernel) k(y, y′) in the Reconstructed
Coordinate space Y h = h(Xh) between the points y ∈ Y h and y′ ∈ Y n = {h(X), X ∈
Xn} is introduced to provide the approximate equalities

k(h(X), h(X ′)) ≈ K(X, X ′). (70)

for the near points X ∈ Xh and X ′ ∈ Xn.
The matrices {G(y)} are constructed to ensure the approximate equalities

G(h(X)) ≈ H(X); (71)

thus, the relations (64)–(66) can be written in the form

X − g(y) ≈ G(y)× (h(X)− y) (72)

for near points y and h(X).
By writing these equations for the sample points X ∈ Xn whose embedding h(X)

close to the point y, we can estimate the value g(y) for ‘OoS points’ y ∈ Y h/Y n to
provide both the desired relations (8) and

G(y) = Jg(y). (73)

Therefore, the relations (57), (63), (71)–(73) provide the required proximities (13)
and (50), whence comes the Tangent Bundle proximity (49).

Note 1. In the Laplacian Eigenmaps[2] solution of the Sample Embedding
Problem, the embeddings hi = h(n)(Xi)(2), i = 1, 2, . . . , n, are chosen to minimize
the cost function

LLE(h(n)) =
∑n

i,j=1
KE (Xi, Xj)× ‖hi − hj‖2 (74)

under the normalizing constraint∑n

i=1
KE (Xi)×

(
hi × hT

i

)
= Iq,KE(X) =

∑n

j=1
KE (X, Xj)

required to avoid a degenerate solution. The minimized cost function (59) similar
to the cost function (74), but minimization in (59) is done over the matrices {Hi ∈
Stief(p, q)} under the constraints (58) and (60), while minimization in (74) is done
over the vectors {hi ∈ Rq} under the constraint (68). Note also that the aggregate
kernel K (54) is used in (59), while the Euclidean heat kernel KE (51) is used in (74).

The cost function (74), called the Laplacian[2], is discrete analogous to the
continuous functional

L(h) =
∫

X

‖∇h (X) ‖2 =
∑q

i=1

∫

X

LLB (hi)× hi (75)

defined on the vector embedding h(X) = (h1(X), h2(X), . . . , hq(X))T (3), which, in
turn, is defined on the Data Manifold X; here LLB(hi) = −div(∇hi) is the Laplace
Beltrami operator on manifold applied to the component hi of the Embedding function
h.

The cost function (59) is also discrete analogous to the continuous functional
L(Hess(g)), which is similar to the functional L(h) (75), but in which the Laplace
Beltrami operator is applied to the elements of all the Hessian matrices Hessg,k(y) of
the components gk(y) of the vector function g(y) = (g1(y), g2(y), . . . , gp(y))T (5) at
the point y = h(X).

Note 2. Under the condition (63), the typical term ‖H (X ′)−H(X)‖2F in the
quadratic form (59) equals approximately to the quantity

∑p

k=1
|Hessg,k (h (X))× (h(X ′)− h (X))|2 ;
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thus, the quadratic form ∆n(Hn) (59) is close to the quadratic form

∆n,θ(Xn) =
∑

i>j

K (Xi, Xj)×
{

(yi − yj)
T × [

H2
θ (yi) + H2

θ (yj)
]× (yi − yj)

}
,

where yi = h(Xi), i = 1, 2, . . . , n, and q × q matrix H2
θ (y) is

H2
θ (y) =

∑p

k=1
(Hessg,k (y))T ×Hessg,k (y) ,

whose trace is squared Frobenius norm of the Hessian of Reconstruction mapping g(y)
(5).

Thus, the minimum values of the quadratic forms (59) and (62) characterize the
averaged local curvature of the reconstructed manifold Xθ.

Note 3. Tangent Space Learning[29], or, more generally, Subspace Learning[11],
is newly emerging direction in the ML. The problem of estimating the tangent spaces
L(X) to the DM X at the points X ∈ X in the form of a smooth function of the point
X was considered in some previous works. The matrices whose rows approximately
span the tangent spaces were constructed using Artificial Neural Networks with one
hidden layer[5] or Radial Basis Functions[19,20]. In Ref. [29], other method (namely,
Persistent Tangent Space Learning) is proposed for constructing the approximations
for the tangent spaces, which smoothly varied on the manifold; this method also based
on considering the tangent spaces as points in Grassmann manifold.

4.3 Sample-based approximation of Tangent Manifold

The Grassmann manifold Grass(p, q) can be considered[22] as the quotient
manifold of the Stiefel manifold Stief(p, q) with respect to the group Stief(q, q).
Thus, the matrices Hi ∈ Stief(p, q), i = 1, 2, . . . , n, and H(X) ∈ Stief(p, q), which
satisfy the conditions (58) and (61), respectively, can be presented in the form

H(X) = QPCA(X)× v(X), (76)

Hi = QPCA(Xi)× vi, i = 1, 2, . . . , n, (77)
where v1, v2, . . . , vn, v(X) ∈ Stief(q, q).

From (77), the quadratic form (59) can be written as

∆V (v1, v2, . . . , vn) =
1
2

∑n

i,j=1
K (Xi, Xj)× ‖QPCA(Xi)× vi −QPCA(Xj)× vj‖2F .

(78)
Note. Minimization of (i, j)-term in (78) over the orthogonal matrices vi and vj

is known as the Procrustes problem[22,27]. Thus, minimization of the quadratic form
(78) over the matrices v1, v2, . . . , vn may be referred to as the Averaged Procrustes
problem.

Consider nq×nq matrices Φ = ‖Φij‖ and F = ‖Fij‖ which consist of n2 q × q
matrices

Φij = K(Xi, Xj)× (QPCA(Xi))T ×QPCA(Xj),

Fij = δij × 1
K
×K(Xi)× Iq, i, j = 1, 2, . . . , n.

Using the representation (77), the quadratic form (59) under the constraint (60)
can be wtitten in the form

∆V (v1, v2, . . . , vn) = K − Tr(V T × Φ× V ),
where the transposed value

V T =
(
vT
1 : vT

2 : · · · : vT
n

)
(79)
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of the (nq) × q matrix V is the n sequentially recorded transposed submatrices
v1, v2, . . . , vn.

The constraint (60), which coincides with the constraint
1
K

∑n

i=1
K(Xi)× (vT

i × vi) = Iq,

can be wtitten in the form
V T × F × V = Iq. (80)

Thus, the optimization problem (59) is reduced to maximizing the quadratic form
Tr(V T × Φ × V ) over the (nq) × q matrices V under the constraint (80), and we
obtain the following Theorem 2.

Theorem 2. Let the columns of (nq) × q matrix V are the orthonormal
eigenvectors V1, V2, . . . , Vq ∈ Rnq corresponding to the q largest eigenvalues in the
generalized eigenvector problem

Φ× V = λ× F × V.

Let v1, v2, . . . , vn be the matrices whose transposed values are defined as the n
sequentially recorded submatrices in the representation (79) of the constructed
matrix V T .

Then the matrix set Hn consisting of the matrices (77) with the above defined
matrices v1, v2, . . . , vn minimizes the quadratic form (59) under the constraint (60).

Note. The constructed linear spaces {Span(Hi)} can be considered as the result
of a global alignment of the PCA-based linear spaces {LPCA(Xi)}. Similar alignment
problem was studied in the LTSA[72,73] with using a cost function which differs from
our cost function (59), (78).

Given the already constructed matrix set Hn, a solution of the minimization
problem (62) for the quadratic form ∆H(H(X)) is obtained in explicit form in
Theorem 3.

Theorem 3. The matrix
H(X) ≡ H(X|Hn) = π(X)×HKNR(X) (81)

satisfies the constraint (61) and minimizes the quadratic form ∆H(H(X)) (62); here
π(X) = QPCA(X)× (QPCA(X))T (82)

is projector onto the linear space LPCA(X) (52), and

HKNR(X) =
1

K (X)

∑n

j=1
K (X, Xj)×Hj

is standard Kernel Non-parametric Regression[67]-based estimator for H(X) based on
the preliminary values Hj ∈ Hn of the matrix H(X) at the sample points.

Corollary of Theorem 3. The matrix v(X) in the representation (76) of the
matrix H(X) equals to

v(X) = (QPCA(X))T ×HKNR(X). (83)

The final values {H(Xi)} (81) at the sample points do not coincide with the
preliminary values {Hi ∈ Hn}. But the followibg Theorem 4 hold true.

Theorem 4. The set Hn, which was constructed in the Theorem 2, minimizes
the averaged residual

D(Hn) =
∑n

i=1
K(Xi)× ‖Hi −H (Xi|Hn) ‖2F

over the matrices {Hi} (77) under the normalizing constraint (60).
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Note. Such approach to constructing the matrices {Hi} by minimizing the
residual D(Hn) have parallels with the LLE[52]; an equivalence of the optimization
schemes ∆n(Hn) and D(Hn) like the equivalence LLE and LE[2] set out in Ref. [2].

4.4 Solution of the Embedding Problem

Under the representation (77), the weighted residual ∆n(hn) (67) can be written
as

∆n(hn) =
1
2

∑n

i,j=1
K (Xi, Xj)×

{∣∣π⊥ (Xi)× (Xj−Xi)
∣∣2 +

∣∣vi × (hj−hi)−cj|i
∣∣2

}
,

where cj|i = (QPCA(Xi))T × (Xj −Xi) are the expansion coefficients of projection of
the vectors (Xj −Xi) onto the linear space LPCA(Xi) in the PCA basis QPCA(Xi).
Thus, we obtain the following Theorem 5.

Theorem 5. The vector set hn, which minimizes the weighted residual ∆n(hn)
(67), is the solution of the linear least squares equations with jth equation

n∑

i=1

K (Xi, Xj)×(vT
i ×vi+vT

j ×vj)×(hj−hi) =
n∑

i=1

K (Xi, Xj)×
(
vT

i × cj|i − vT
j × ci|j

)
,

j = 1, 2, . . . , n, complemented by the normalizing equation (68).
Note. The vector set hn determined in Theorem 5 gives a new solution of the

Sample Embedding Problem.
Given the already constructed vector set hn, the solution of the minimization

problem (69) for the weighted residual ∆h(h(X)) is obtained in explicit form in
Theorem 6.

Theorem 6. The vector

h(X)=hKNR(X)+v−1(X)×(QPCA(X))T×

X − 1

K (X)

n∑

j=1

K (X, Xj)×Xj




(84)
minimizes the weighted residual ∆h(h(X)) (69); here v(X) is determined in (83) and

hKNR(X) =
1

K (X)

∑n

j=1
K (X, Xj)× hj

is standard Kernel Non-parametric Regression-based estimator for h(X) based on the
preliminary values hj ∈ hn of the vector h(X) at the sample points.

Note. The embedding h(X) determined in Theorem 6 gives a new solution of
the Manifold Embedding Problem.

4.5 Tangent Bundle reconstruction

4.5.1 Nearness measure in the Reconstructed Coordinate space

Let the Sample embedding dataset
Y n = h(Xn) = {h(X1), h(X2), . . . , h(Xn)} ≡ {y1, y2, . . . , yn}

consists of values of the mapping h (84) at the sample points. Denote the inverse
mapping h−1(y) defined only on the sample embeddings y ∈ Y n as h−1(yi) = Xi, i =
1, 2, . . . , n.

Let y = h(X) ∈ Y h = h(Xh) be an arbitrary point, and let X ′ ∈ Xn be some
sample point close to X. It is follows from (66) that

X −X ′ ≈ H(X ′)× (y − y′),
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where y′ = h(X ′) ∈ Y n, whence, with taking into account the relations (77), we get
the approximate relation

|X −X ′| ≈ |v(X ′)× (y − y′)|. (85)

Denote q × q matrix Kv(X) = vT (X)× v(X), and define
uE(y) = {y′ ∈ Y n : [(y′ − y)T ×Kv(h−1(y′))× (y′ − y)]1/2 < ε1}

the neighborhood of the point y ∈ Y h. Introduce the Euclidean nearness measure
kE(y, y′) = k0(y, y′)× exp{−(ε2)2 × (y − y′)T ×Kv(h−1(y′))× (y − y′)} (86)

between the points y ∈ Y h and y′ ∈ Y n; here k0(y, y′) = 1 if y′ ∈ UE(y), and
k0(y, y′) = 0 otherwise. From (85), (86), we get the approximate equalities

KE(X, X ′) ≈ kE(h(X), h(X ′)) (87)
for close points X ∈ Xh and X ′ ∈ Xn.

By applying the PCA to the set
U∗

E(y) = {h−1(y′) : y′ ∈ uE(y)} ⊂ Xn,

the ordered eigenvalues λ∗1(y) > λ∗2(y) > . . . λ∗p(y) and the corresponding principal
vectors are constructed. Introduce the subset

Y g = {y ∈ Rq : λ∗q(y) > ε3},
which will be the domain of definition of the built in the future mapping g and matrix
G.

For y ∈ Y g, define the p × q orthogonal matrix q(y) with columns consisting of
the first q principal vectors, and define the linear space

L∗(y) = Span(q(y)) ∈ Grass(p, q).

Using the Binet-Cauchy kernel (55) on the Grassmann manifold Grass(p, q),
introduce the tangent nearness measure between the points y ∈ Y g and y′ ∈ Y n by
the kernel

kG(y, y′) = Det2(qT (y)×QPCA(h−1(y′))), (88)

and introduce the aggregate kernel
k(y, y′) = kE(y, y′)× kG(y, y′). (89)

on the Reconstructed Coordinate space.
As before, we assume that the DM X is well sampled to provide inclusion Y θ ⊂

Y g. It is follows from (85), (87) and the introduced definitions (88), (89), that the
approximate equalities (70) hold for the near points X ∈ Xh with h(X) ∈ Y g and
X ′ ∈ Xn.

4.5.2 Tangent Manifold Reconstruction

Based on the desired conditions (71) and (73), construct p × q matrix G(y) for
arbitrary point y ∈ Y g, which satisfies the constraint Span(G(y)) = L∗(y) and
minimizes the quadratic form

∆G(G(y)) =
1
2

∑n

j=1
k (y, yj)× ‖G (y)−H (Xj) ‖2F . (90)

A solution of this problem in explicit form is obtained in Theorem 7.
Theorem 7. The matrix

G(y) = q(y)× qT (y)× 1
k (y)

∑n

j=1
k (y, yj)×H (Xj) , k(y) =

∑n

j=1
k (y, yj) ,

meets the required constraint and minimizes the quadratic form (90).
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4.5.3. Data Manifold Reconstruction

For near points y ∈ Y g and y′ ∈ Y n, the approximate relations (64) under the
desired conditions (8) and (73) can be written in the form

h−1(y′)− g(y) ≈ G(y)× (y′ − y).
Construct the vector g(y) ∈ Rp for an arbitrary point y ∈ Y g by minimizing the

weighted residual

∆g(g(y)) =
∑n

j=1
k (y, yj)× ‖Xj − g (y)−G (y)× (yj − y) ‖2. (91)

A solution of this problem in explicit form is obtained in Theorem 8.
Theorem 8. The p-dimensional vector

g(y) = gKNR(y) + G(y)×
(

y − 1
k (y)

∑n

j=1
k (y, yj)× yj

)
(92)

satisfies the condition Jg(y) = G(y) (73) for the points y ∈ Y g and minimizes the
weighted residual (91); here

gKNR(y) =
1

k (y)

∑n

j=1
k (y, yj)×Xj

is standard Kernel Non-parametric Regression-based estimator for g(y) based on the
preliminary values Xj ∈ Xn of the vector g(y) at the sample points yj ∈ Y n.

Note. For near points y ∈ Y g and y′ ∈ Y n, the approximate relations (64)
can be also written in the form

g(y)− h−1(y′) ≈ H(h−1(y′))× (y − y′),
and the weighted residual (91) can be replaced by close quadratic form

∆(g(y)) =
∑n

j=1
k (y, yj)× ‖g (y)−Xj −H (Xj)× (y − yj) ‖2,

whose optimization gives the solution

g∗(y) = gKNR(y) +
1

k (y)

∑n

j=1
k (y, yj)×H(Xj)× (y − yj), (93)

which is close to the solution g(y) (92).
The mapping g(y) (92) and the close mapping g∗(y) (93) determine the

Reconstructed Data Manifolds Xg and Xg∗ (9), (11).

4.6 Properties of the GSE

We present without proof a few properties of the GSE algorithm.

1) If the sample size n tends to infinity together with a tending the threshold ε1 = ε1n

in the neighborhoods UE(X) and uE(y) to 0 with an appropriate convergence rate,
then all the points from the sets X and Y θ will fall into the sets Xh and Y g,
respectively.

2) As was showed in Ref. [71], the radius ε1n must tend to 0 as n →∞ with the rate
O(n−1/(q+2)); this rate ensures asymptotically optimal Tangent Bundle proximity:

‖X − rθ(X)‖ = O(n−2/(q+2)) and dP,2(L(X), Lθ(rθ(X))) = O(n−1/(q+2)),
uniformly over all the points X ∈ X; here dP,2 is the projection 2-norm metric on
the Grassmann manifold Grass(p, q).

3) The residual vector ∆(X) = X − rθ(X) can be approximately represented in the
form

∆(X) ≈ π⊥(X)× (X − τ(X))
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with the error of the order O((ε1n)2), where

τ(X) =
1

K (X)

∑n

j=1
K (X, Xj)×Xj .

The point X − τ(X) lies nearly the linear space L(X) ≈ LPCA(X) = Lg(h(X)),
whence comes the relation

(QPCA(X))T ×∆(X) ≈ 0

with the error of the order O((ε1n)2). The latter relation means that the
constructed mapping h(X) (84) projects approximately the point X onto the
Reconstructed manifold Xθ, whence comes that the embedding h(X) coincides
approximately wtth the embedding hg(X) (15) and the maximum reconstructed
error δθ(X0, ε1n) (14) is O((ε1n)2).

4) Consider Jacobians Jg•h and Jh•g of the mappings rθ = g • h (12) and h • g:
Y θ → Y θ, respectively; the latter mapping h(g(y)) is the result of successively
applying the reconstruction mapping g to the point y ∈ Y θ and then applying the
embedding mapping h to the reconstruction result g(y) ∈ Xθ ⊂ Xh. Then the
following relations

Jg•h(X) = π(X),

Jh•g(y) = Iq,

hold true. As a consequence, the residual vector ∆(X) has null Jacobian, and the
following relations

rθ(X ′)− rθ(X) = X ′ −X + o(‖X ′ −X‖),
h(rθ(X ′))− h(rθ(X)) = h(X ′)− h(X) + o(‖X ′ −X‖),

hold true for the near points X, X ′ ∈ X.

5 Numerical Experiments

The GSE-solution θ = (h, g) gives also a new solution for the ML. To compare
the GSE ML-solution with the known methods, the comparative numerical
experiments were performed[9]: the GSE-algorithm was compared with the LLE[52],
Conformal Eigenmaps[56]; HE[21] (also called Hessian LLE), ISOMAP[63], Landmark
ISOMAP[60], LTSA[72].

Two artificial nonlinear Data Manifolds in R3 were used in the experiments:
SwissRoll (Fig. 1(a)) and Spiral (Fig. 2(a)). The training datasets were sampled
randomly from these manifolds, and all compared algorithms were applied to the
same training samples to construct Embedding and Reconstruction mappings (LLE
Reconstruction[53] was used for the algorithms without own reconstruction
mapping). The training points on the SwissRoll and Spiral are shown in the Fig.
1(b) and Fig. 2(b), respectively.
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(a) (b)

Figure 1. SwissRoll manifold (a) and Training Dataset (b) consisting from ntrain = 450

points

(a) (b)

Figure 2. Spiral manifold (a); Original and Solid Reconstructed Spiral manifold (b)

The results of embedding of the training dataset obtaining by the GSE, LLE,
ISOMAP and LTSA are shown in the Fig. 3.

GSE LLE

ISOMAP LTSA

Figure 3. Embedding of SwissRoll Training dataset by various methods
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The independently generated test dataset from the SwissRoll is shown in the Fig.
4(a). The result of embedding of this dataset obtaining by the GSE is shown in the
Fig. 4(b). The result of reconstruction of this dataset is shown in the Fig. 4(c).

The result of “solid reconstruction” of the SwissRoll obtaining by applying the
GSE to huge test dataset, which has been generated as the non-random uniform grid
on the SwissRoll, is shown in the Fig. 4(d). The result of solid reconstruction of the
Spiral obtaining by the GSE is shown in the Fig. 2(b).

The training data sets with various sizes were generated also on the considered
artificial manifolds. Then, all the above algorithms were applied to these training
dataset to get the Embedding and Reconstruction mappings. After that, the
independent large test datasets were sampled randomly from the manifolds and the
constructed Embedding and then Reconstruction mappings were applied to the test
datasets. The averaged Reconstruction errors (7) based on the test datasets were
calculated for each algorithm. These averaged errors are presented in the Fig. 5 (for
SwissRole) and Fig. 6 (for Spiral).

(a) (b)

(c) (d)

Figure 4. Results for GSE algorithms: (a) Test SwissRoll dataset; (b) Embedding of Test

SwissRoll dataset; (c) Reconstruction of Test SwissRoll dataset; (d) Solid reconstruction

(based on huge uniform test grid)
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Figure 5. Mean SwissRoll Reconstruction errors calculated for compared methods for

various sizes of training dataset

Figure 6. Mean Spiral Reconstruction errors calculated for compared methods for various

sizes of training dataset

The Fig. 5 and Fig. 6 show that the proposed GSE algotithm outperforms the
compared algorithms with respect to averaged reconstruction error. The numerical
experiments performed for other artificial manifolds demonstrate also a good quality
of the GSE algorithm.

6 Conclusions

In the paper, we consider Manifold Learning (ML) problems, that is, the Non-
linear Dimensionality Reduction problems under the Manifold Data model, in which a
finite dataset is sampled randomly from an unknown low-dimensional Data Manifold
embedded in a higher dimensional observation space. A few different formalizations
of the ML are discussed. Unlike many works in which the ML is considered as a
problem of constructing the low-dimensional parameterization of the Data Manifold,
we consider ML as the problem of accurate reconstruction of the Data Manifold from
the sample. An accuracy of the Data manifold reconstruction for the Out-of-Sample
points characterizes the generalization ability of the ML solution.
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We derive asymptotic expansion and local lower and upper bounds for the
maximum reconstruction error in a small neighborhood of an arbitrary point from
Data Manifold. The expansion and bounds are defined in terms of the distance
between tangent spaces to the original Data Manifold and the sample-based
Reconstructed Manifold at the selected point and its reconstructed value,
respectively. These results imply that the greater the distance between these tangent
spaces, the lower the local generalization ability of the ML solution becomes, the
poorer the local structure is preserved at the points of the Data Manifold.

By these reasons, we propose an amplification of the ML, called Tangent Bundle
Manifold Learning, in which proximity is required not only between the Data
Manifold and the sample-based Reconstructed Manifold but also between their
tangent spaces. We present a new geometrically motivated Grassman&Stiefel
Eigenmaps algorithm that solves this problem, reconstructs accurately the tangent
spaces of the Data Manifold and gives a new solution for the ML also. The results of
performed comparative numerical experiments are presented.
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