首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群径向基函数网络的地下水预测模型
引用本文:曹邦兴. 基于蚁群径向基函数网络的地下水预测模型[J]. 计算机工程与应用, 2010, 46(2): 224-226. DOI: 10.3778/j.issn.1002-8331.2010.02.066
作者姓名:曹邦兴
作者单位:广州大学 松田学院,广州 511370
摘    要:提出了一种基于蚁群算法的径向基函数神经网络,用它来进行地下水位预测,既具有神经网络广泛映射能力,又具有蚁群算法全局寻优、分布式计算等特点。实验表明,蚁群算法与径向基函数神经网络相融合能达到良好的预测效果。

关 键 词:蚁群算法  径向基函数网络  地下水位  预测  
收稿时间:2008-07-24
修稿时间:2008-10-20 

Prediction model of underground water level that combined ant colony algorithms with RBF network.
CAO Bang-xing. Prediction model of underground water level that combined ant colony algorithms with RBF network.[J]. Computer Engineering and Applications, 2010, 46(2): 224-226. DOI: 10.3778/j.issn.1002-8331.2010.02.066
Authors:CAO Bang-xing
Affiliation:Songtian Institute,Guangzhou University,Guangzhou 511370,China
Abstract:A prediction model of underground water level that combined ant colony algorithms with radial basis function neural network is proposed.It not only has extensive mapping ability of neural network,but aslo has the advantages of global covergence and distributed computation of ant system.The experimental result indicates good performance can be obtained by neural network based on ant colony algorithms in prediction of underground water level.
Keywords:ant colony algorithms  radial basis function network  underground water level  prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号