首页 | 本学科首页   官方微博 | 高级检索  
     

各向异性扩散图像去噪的改进模型
引用本文:郑满满,胡小兵,郑申海. 各向异性扩散图像去噪的改进模型[J]. 计算机工程与应用, 2013, 49(18): 130-133
作者姓名:郑满满  胡小兵  郑申海
作者单位:重庆大学 数学与统计学院,重庆 401331
摘    要:图像去噪过程中,为了在有效平滑噪声的同时较好地保护图像的边缘和细节,在Cattle平滑模型基础上,对扩散系数作出改进,提出了更有效的自适应去噪模型。该模型不仅针对不同的梯度大小采用了不同的扩散系数,而且将边缘锐化因子二阶偏导引入到扩散系数中。而在图像质量评判标准中,提出了基于相关系数函数的最佳停止时间评判准则。实验结果表明,改进的模型优于C模型,且能更好地吻合评判准则。

关 键 词:图像去噪  各向异性扩散  扩散系数  相关系数  

Improved model of anisotropic diffusion image denoising
ZHENG Manman,HU Xiaobing,ZHENG Shenhai. Improved model of anisotropic diffusion image denoising[J]. Computer Engineering and Applications, 2013, 49(18): 130-133
Authors:ZHENG Manman  HU Xiaobing  ZHENG Shenhai
Affiliation:College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
Abstract:In the process of image denoising, in order to remove noise effectively and preserve edges and key details, the diffusion coefficient based on the Cattle model is improved and a more effective adaptive denoising model is proposed. The model can not only adopt different diffusion coefficient according to different sizes of the gradient but also lead the edge sharping factor of second order partial deviation into the diffusion coefficient. The best stop time evaluation criteria based on correlation coefficient is proposed in the mean time. The experimental results show that the improved model is superior to C model, and can better coincide with the judge standard.
Keywords:image denoising  anisotropic diffusion  diffusion coefficient  correlation coefficient  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号