首页 | 本学科首页   官方微博 | 高级检索  
     

基于正弦变换的人脸姿态校正及识别研究
引用本文:龚卫国,黄潇莹,李伟红. 基于正弦变换的人脸姿态校正及识别研究[J]. 计算机工程与应用, 2010, 46(22): 213-216. DOI: 10.3778/j.issn.1002-8331.2010.22.062
作者姓名:龚卫国  黄潇莹  李伟红
作者单位:重庆大学 光电技术及系统教育部重点实验室,重庆 400030
基金项目:国家高技术研究发展计划(863),国家"十一五"基础研究项目,重庆市科技攻关研究项目 
摘    要:姿态变化是影响人脸识别率的一个至关重要的因素,也是人脸识别问题中一个待解决的难题。当测试样本具有一定的姿态变化后,识别率会急剧下降。针对此问题,提出了利用正弦变换(Sine Transform,ST)对待识别的姿态图像进行姿态校正,虚拟出对应的正面人脸的方法。使用经典算法进行特征提取、最近邻分类器进行分类识别验证,得到了较好的结果。在FERET人脸库上的实验表明,该方法能够在一定程度上克服姿态变化的影响,平均识别率最高可提高17%。

关 键 词:人脸识别  姿态校正  正弦变换  虚拟样本  
收稿时间:2009-02-02
修稿时间:2009-4-3 

Face pose correction for facial recognition based on sine transform
GONG Wei-guo,HUANG Xiao-ying,LI Wei-hong. Face pose correction for facial recognition based on sine transform[J]. Computer Engineering and Applications, 2010, 46(22): 213-216. DOI: 10.3778/j.issn.1002-8331.2010.22.062
Authors:GONG Wei-guo  HUANG Xiao-ying  LI Wei-hong
Affiliation:Key Lab of Opto-electronic Technology and System of Education Ministry of China,Chongqing University,Chongqing 400030,China
Abstract:Pose variation is one of the crucial factors and also is a difficult issue that stands in the way of a complete solu- tion to the face recognition problem.The recognition rate will decrease drastically when the probe samples change.This paper proposes a strategy to make pose corrections to the probe samples before recognition,by using Sine Transform(ST) to gener- ate virtual frontal faces, classical algorithms to extract features and the nearest neighbor classifier to classify and recognize. The experiment results on FERET face database demonstrate that the recognition rates increase significantly by adding pose correction,and the best recognition rate has improved by 17%.
Keywords:face recognition  pose correction  sine transform  virtual samples
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号