首页 | 官方网站   微博 | 高级检索  
     


An Integrated Multifunctional Nanoplatform for Deep‐Tissue Dual‐Mode Imaging
Authors:Fan Yang  Artiom Skripka  Antonio Benayas  Xianke Dong  Sung Hwa Hong  Fuqiang Ren  Jung Kwon Oh  Xinyu Liu  Fiorenzo Vetrone  Dongling Ma
Affiliation:1. Institut National de la Recherche Scientifique – énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec, Canada;2. Department of Physics and CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal;3. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada;4. Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
Abstract:The combination of biocompatible superparamagnetic and photoluminescent nanoparticles (NPs) is intensively studied as highly promising multifunctional (magnetic confinement and targeting, imaging, etc.) tools in biomedical applications. However, most of these hybrid NPs exhibit low signal contrast and shallow tissue penetration for optical imaging due to tissue‐induced optical extinction and autofluorescence, since in many cases, their photoluminescent components emit in the visible spectral range. Yet, the search for multifunctional NPs suitable for high photoluminescence signal‐to‐noise ratio, deep‐tissue imaging is still ongoing. Herein, a biocompatible core/shell/shell sandwich structured Fe3O4@SiO2@NaYF4:Nd3+ nanoplatform possessing excellent superparamagnetic and near‐infrared (excitation) to near‐infrared (emission), i.e., NIR‐to‐NIR photoluminescence properties is developed. They can be rapidly magnetically confined, allowing the NIR photoluminescence signal to be detected through a tissue as thick as 13 mm, accompanied by high T2 relaxivity in magnetic resonance imaging. The fact that both the excitation and emission wavelengths of these NPs are in the optically transparent biological windows, along with excellent photostability, fast magnetic response, significant T2‐contrast enhancement, and negligible cytotoxicity, makes them extremely promising for use in high‐resolution, deep‐tissue dual‐mode (optical and magnetic resonance) in vivo imaging and magnetic‐driven applications.
Keywords:deep‐tissue optical imaging  dual‐mode imaging  magnetic resonance imaging  multifunctional nanoparticles  near‐infrared to near‐infrared
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号