首页 | 官方网站   微博 | 高级检索  
     


Design of Engineered Elastomeric Substrate for Stretchable Active Devices and Sensors
Authors:Giuseppe Cantarella  Vincenzo Costanza  Alberto Ferrero  Raoul Hopf  Christian Vogt  Matija Varga  Luisa Petti  Niko Münzenrieder  Lars Büthe  Giovanni Salvatore  Alex Claville  Luca Bonanomi  Alwin Daus  Stefan Knobelspies  Chiara Daraio  Gerhard Tröster
Affiliation:1. Institute for Electronics, Swiss Federal Institute of Technology, Zurich, Switzerland;2. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA;3. Institute of Mechanical Systems, Swiss Federal Institute of Technology, Zurich, Switzerland;4. Sensor Technology Research Center School of Engineering and Informatics, University of Sussex, Brighton, UK
Abstract:In the field of flexible electronics, emerging applications require biocompatible and unobtrusive devices, which can withstand different modes of mechanical deformation and achieve low complexity in the fabrication process. Here, the fabrication of a mesa‐shaped elastomeric substrate, supporting thin‐film transistors (TFTs) and logic circuits (inverters), is reported. High‐relief structures are designed to minimize the strain experienced by the electronics, which are fabricated directly on the pillars' surface. In this design configuration, devices based on amorphous indium‐gallium‐zinc‐oxide can withstand different modes of deformation. Bending, stretching, and twisting experiments up to 6 mm radius, 20% uniaxial strain, and 180° global twisting, respectively, are performed to show stable electrical performance of the TFTs. Similarly, a fully integrated digital inverter is tested while stretched up to 20% elongation. As a proof of the versatility of mesa‐shaped geometry, a biocompatible and stretchable sensor for temperature mapping is also realized. Using pectin, which is a temperature‐sensitive material present in plant cells, the response of the sensor shows current modulation from 13 to 28 °C and functionality up to 15% strain. These results demonstrate the performance of highly flexible electronics for a broad variety of applications, including smart skin and health monitoring.
Keywords:circuits  engineered substrates  stretching  temperature sensors  thin‐film transistors (TFTs)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号