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Echo extraction from bottom reverberation
based on chaos
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Abstract:

A novel method based on chaos theory for echo extraction from reverberation is pro-

posed. Effectiveness of this method is mainly due to a new prediction model based on radial basis

function (RBF) neural networks, which uses forward and backward prediction (FBP). Principles of

the model used for chaotic signal separation is explained. Performances for the chaoctic signal

modeling and harmonic signal extraction are analyzed using

several chaotic time series as exam-

ples. The result of the model in the extraction of object echoes from real lake-bottom reverberation

shows that the model can be used to extract object echoes when signal-to-reverberation-ratio is

greater than 1dB.
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1 INTRODUCTION

In the anti-mine sonar signal processing, strong
bottom reverberation severely disturbs the feature
extraction of the object echoes, and the object iden-
tification under low signal-reverberation-ratio is a
difficult problem for anti-mine sonar. To extract the
object echoes from reverberation is a direct method
for improving the feature extraction of object echoes,
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but in frequency spectrum the reverberation is iden-
tical with object echoes, and linear filtering methods
are hard to improve the signal-reverberationratio.
The method of space filtering can combat rev-
erberation to some degree, but for the mines laid on
sea bottom far away, the improved signal-reverber-
ation-ratio is not large enough to satisfy the dem-
and of effective feature extraction.

Since more than ten years ago, great efforts have
being made to apply the rapidly developing theory
of nonlinear dynamics and signal processing methods
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based on chaos theory to medicine, economics, com-
munication, radar, sonar, etc. The dynamical pro-
perty analysis for the observed reverberations in
pond-trials, lake-trials, and sea-trials'¥ showed that
the reverberation exhibit disjoint dynamical trajec-
tories in four-dimensional reconstructed state space,
and the close trajectories diverge or shrink by law
of exponent, and that the largest Lyapunov expo-
nent lies between 0 and 0.3. It implies that the ne-
cessary condition of the reverberation having chaos
properties is satisfied, and, therefore, the received
signals of active sonar may be modeled by low
dimensional dynamical methods and can be proce-
ssed by methods based on chaos theory.

In the case of unknown dynamical equations
of the chaos system, the methods of signal separation
based on chaos theory can be divided into two
kinds. One is the methods of blind signal separation
without any priori knowledge available, for example
and the
other is the methods using some available informa-

locally geometrical projection methods ™,

tion, which may be a long enough clean time series
having the same dynamics as observations. One of
the latter is scaled probabilistic cleaning methods'®,
in which the probabilistic characteristics of the orbits
in reconstructed state space come from a clean
chaotic signal. In order to gain correct probabilistic
characteristics, the length of the clean chaotic signal
must be long enough, and this method is very time-
consuming and needs large memories while working.

Sea bottom reverberation is the summation of
backward scatter of sound projected onto sea bottom.
Within some distance, the angles of incidence of
sound rays at sea bottom are almost equal and the
sound scatter characteristics of the sea bottom are
identical. The reverberation within some distance
segment can be modeled by low dimensional
dynamical methods and the built model can be
used to predict the reverberation in succeeding
signals and combat it. If the sound scattering cha-
racteristics of the sea bottom ahead are consistent

with those of modeled areas, the dynamical charac-

teristics and evolving rules would be close and the
prediction error should be small. On the contrary, if
the sound scattering characteristics ahead distinctly
differ from those of modeled areas or there is a
big stone or a man-made object, the changes of the
dynamical characteristics and evolving rules would
result in greater prediction errors. If the modeling
precision is high enough, the object echoes buried
in sea bottom reverberation could be partly separated.

In this paper, a new model based on RBF
neural networks for chactic time series is proposed
and is applied to partly separating the object
echoes buried in sea bottom reverberation.

2 FBP MODELS AND ITS FUNDAMENTAL
OF SIGNAL SEPARATION

2.1 FBP models based on RBF neural networks

Henry Leung® used only the N data before
time n for modeling the time series y(n), and this
kind of model is called forward prediction (FP)
models. But, in the case of long data available, the
data after time n can also be used to build the
prediction model. It is similar to smoothing in linear
filtering and the simultaneous use of the 2N data
before and after time n may provide more accurate
description for the dynamical system. The structures
of the FP model and the FBP model based on
RBF neural networks are showed in figure 1.
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(a) Forward prediction model

x(n)

seor

RBFNN ‘

(b) Forward and backward united prediction model

Fig.l Two types of prediction models
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In order to measure the prediction effective-
ness of a model for the chaotic time series, the nor-
malized in-sample prediction error A; and the nor-
malized out-of-sample prediction error A, are resp-
ectively defined by
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where Var(Y,(n)) denotes the variance of the time
series {Y(n)}.

2.2 Fundamental of signal separation

If the nonlinear dynamics of the system is kn-
own, that is to say, the evolving equation x(n+1)
=F(X(n)) is given, the chaotic time series satisfy-
ing the nonlinear dynamics can be estimated, and
the signal of interest, for example, harmonic signals,
could be extracted by subtraction. If the nonlinear
dynamics is unknown but a long enough clean time
series satisfying the same dynamics is available,

the prediction model of the system x(n+1) =F(X(n))
could be established by any modeling method based
on chaos theory and is used to separate the chaotic
time series from other signals.

In spite of many proposed prediction models for
chaotic time series, the prediction model applied to
one of which is the
based on RBF neural

signal separation is lacking,
forward prediction model
networks. With the long enough clean time series
satisfying the same dynamics, it is supposed that
x(n+1):|f(X(n)) is the estimated prediction model
based on phase space reconstruction. If the signal
of interest s(n) added to the chactic time series c(n)
is very weak, the attractor in reconstructed phase
space do not change greatly with the little distur-
bance. After the observed time series x(n) is predi-
cted with the built prediction model, the predicted
time series c(n) will satisfy the dynamics more clo-
sely. The error e(n)=x(n)-x(n) is composed of
two components: one is the prediction error € (n),

which comes from the prediction model having li-
mited precision.

¢ (n)=c(n)- x(n) (3)

If the precision of the prediction model is high
enough, the error should be very small; the other
is the added signal x(n), which is often much con-
cerned with in engineering application.

s(n)=e(n)-€'(n)

=e(n)- (¢(n)-X(n)) (4)

From the point view of signal separation, the
prediction error e(n) of the model for the observed
time series is the estimation for the signal s(n) in
fact. If the prediction error ¢ (n)=0, we have s(n)
=e(n)=s(n).

However, when the attractor is disturbed grea-
tly, the prediction precision of the model for the ch-
aotic time series will decrease, which leads to the
severe distortion of the signal of interest. Li Yue,
et al.'®® proposed a method used to detect weak har-
monic signals in chaotic signals by RBF neural net-
works. Although the weak harmonic signals can be
detected accurately, the separated harmonic signals
do not agree with the original added signals both
in amplitude and phase.
the orbits
will converge on the chaotic attractor from any

For a nonlinear dynamical system,

point in the given range after several iterations of
the evolving equations. For a chaoctic time series
containing other signals, the orbits in the reconstr-
ucted state space go away from the chaotic attr-
actor more or less, and the orbits predicted by the
united model F(X) will approach the attractor a bit.
Suppose the estimated signal after the first pred-
iction is denoted by X,(n). One proceeds to predict
the signal x,(n) using the model F(X) and gets the
second estimated signal X.(n). By this rule, after L
iterations, one gets the L th estimated signal x.(n),
which is almost compatible with the approximated
dynamics, and the prediction error €' (n) is very sm-
all. According to formula (2), the prediction error
after the L th iteration e (n)=x(n)- x.(n), and is the
more accurate estimation for the added signal s(n).
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Therefore, if the forward and backward united
prediction model, which has higher modeling preci-
sion, is used to predict the observed time series
several times, the chaoctic time series could be se-
parated from the added signal in some degree.

And in order to measure the separation effec-

tiveness of a model, the signal-noise-ratio (SNR)

is defined by
1% . 1% .
SNR= TTZS(n) :T%S(n) , (5)
%;(e(n)-s(n))z %ge%n)

where T is the length of the signal. The less the
prediction error is, the higher the SNR of the sep-
arated signal of interest is.

3 SIMULATION EXPERIMENTS

3.1 Modeling experiments of chaotic time series

The simulation experiments below show the
validity of the proposed model. Two representative
maps and two representative flows are selected to
compare the performance of the forward prediction
model and the forward and backward united pre-
diction model. The two maps are Henon and Logis-
tics map, and the two flows are Lorenz and Rossler.

According to the equations of the four chaotic
systems, sufficiently long chaotic time series are pro-
duced by computer and two sections of 512 sam-
ples of the four chaotic systems are respectively
selected as training sets and testing sets for pred-
iction models based on RBF neural networks. For
the forward prediction model, the number of input
nodes of the RBF neural networks is equal to the
embedding dimension and, for the forward and back-
ward united prediction model, the number of input
nodes has to be doubled because the two states of

the system before and after time t are used. The
number of output nodes of the RBF neural net-
works for the two prediction models is 1 and the
number of hidden nodes depends on the number of
the input nodes and the size of the training sets.
The embedding dimension and the time delay can
be referred to the false neighbor method and the
mutual information method.

Table 1 shows the normalized in-sample error
and out-of-sample error of the two models for four
types of chaotic time series. In table 1, we can see
that the two types of errors of the forward and
backward united prediction model for Henon, Lorenz,
and Rossler systems are less than those of the
forward prediction model, and, for Logistic systems,
the two types of errors of the forward and backward
united prediction model are a bit greater than
those of the forward prediction model. This mainly
results from the bad time-reversibility of Losgistic
chaotic system. It implies that the proposed predic-
tion model has better prediction performance than
the forward prediction model for the chaotic systems
with good time-reversibility.

3.2 Experiments of harmonic signal extraction
from chaotic time series

To take example for Lorenz, we compared the
performance of the improved model with that of the
forward model in harmonic signal extraction. We
integrated the differential equations of Lorenz using
the fourth-order Runge-Kutta method and the time
series x(t) is used as the chaotic background.

We take 800 samples of the Lorenz time series
as the training data for RBF neural networks. By the
false nearest neighbor method, the embedding di-
mension d should be 4, and by the mutual informa-
tion method, the embedding time delay = should be
5. However, from the point view of actual predic-

Table 1 Two types of normalized error of two prediction models for 4 chaotic time series

Normalized in-sample Error (A

Prediction Models

Normalized out-of-sample Error (A,)

Henon Logistic Lorenz Rossler Henon Logistic Lorenz Rossler
FP Models -5.77 -7.72 -5.15 -5.39 -5.78 -7.70 -4.74 -5.21
FBP Models -6.30 -6.52 -6.76 -7.49 -6.20 -6.16 -6.22 -7.48
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tion effectiveness, the prediction precision is highest
when the time delay is 1. RBF neural networks are
trained to build the dynamical model of the Lorenz
system. In another section of 500 samples of the
Lorenz time series we add a harmonic signal with
magnitude 1 and normalized frequency 0.2, and the
signal-noise-ratio is about -26.30 dB. When we
take d=4, 7=2, part of the extracted harmonic signal
by the forward model is shown in figure 2(a). In
figure 2 and figures below, the symbol' + denotes
the added harmonic signal s(n), the symbol® *’

the prediction error e(n), namely, the estimation
of the model for the added harmonic signal s(n), and
the symbol* o the out-ofsample error e(n), namely,
s(n)-e(n). In this figure, we can see the severe
distortion of the extracted harmonic signal in amp-
litude and phase compared with the added harm-
onic signal. Part of the extracted signal by the for-
ward and backward united model is shown in figure
2(b). We can see the good superposition of the
extracted signal and the added signal. The signal-
noise-ratio of the extracted signal SNR =17.52dB.
Thus it can be seen that the performance of the
harmonic signal extraction has been improved grea-
tly. All parameters of the united model are taken as
above, and after 6 iterations part of the extracted
harmonic signal is shown in figure 2(c). It can be
seen that the out-of-sample prediction error for the
chaotic time series decreases a little more and the
signal-noise-ratio of the extracted harmonic signal
SNR=30.42dB. It shows that iterations of the predi-
ction model may help to lower the out-of-sample
which is compatible with the th-

eory above. But too many iterations would make

prediction error,

the prediction go contrary.

4 OBJECT ECHO SEPARATION FROM
SEA BOTTOM REVERBERATION

4.1 Data
The reverberation was sampled in a lake-trial.
The middle frequency of the transmitted CW pulses

s(n),e(n)

(a) The result of forward prediction model

used for signal separation

s(n), e(n),s(n), -e(n)

(b) The result of forward and backward united

prediction model used for signal separation

s(n), e(n),s(n),-e(n)

5 10 15 20 25 30
n

(c) The result of forward and backward united prediction
model used for signal separation after several iterations

Fig2 Harmonic signal extraction from Lorenz time series

is 20kHz and the pulse width is 0.2ms. The sample
frequency is 108kHz The object is a oxygen bottle,
which lies on the lake bottom with depth 5.56m
and distance 34m and is located in the normal
direction of the receiving array. The received data
are processed by band filtering and power normali-
zation and 31 formed beams rang from -15° to 15°.
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(c) The details of the waveforms before and after

the extraction of the object echo

Fig.3 The extraction of an object echo from reverberation

The normal direction of the receiving array is 0°.
4.2 Object echo separation

Because the receiving array has beam width of
5° at 20kHz,
from the object also contain object echoes with lower

the beam data in directions deviating

signal-reverberation-ratio. Part of the beam data in
direction of -6° is shown in figure 3(a), and an

object echo with the signal-reverberation-ratio about

1dB ranges from 50ms to 51ms. We take the number
of input nodes of RBF neural networks N=4, the
size of training data N,=800, the size of pre-dicting
data N=800, and the embedding time delay 7=1. The
error time series of the FBP model based on RBF
neural networks after 3 iterations is shown in
figure 3(b). We can see that the object echo is
partly extracted from the reverberation with the gain
in the signal-reverberation-ratio of 60dB. The details
of the waves before and after extraction are shown
in figure 3(c), where the symbol* +' denotes the
wave before extraction and the symbol* *' the wave
of the object echo after extraction. The processing
results for many lake-trail data show that the propo-
sed method has good extraction performance for ob-

ject echoes with signal-reverberation-ratio above 1dB.

5 CONCLUSIONS

In this paper a new prediction model based
on RBF neural networks, which unites the forward
and backward maps, is proposed, and the fundam-
ental of the model used for chaoctic signal separa-
tion is explained. With the example of four typical
chaotic systems, the performance of the proposed
model used for modeling chaotic time series and
harmonic signal extraction are analyzed, and the re-
sults show that the proposed model has better
prediction performance than the FP model for chaotic
time series with good time-reversibility, and the pro-
posed model and its iteration can be used to extract
the harmonic signal from the chaotic time series.
The result of the model for the real lake-trail data
shows that it has good extraction performance for
the object echoes with the signal-reverberation-ratio

above 1dB.
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