
 

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn 
Journal of Software, Vol.18, No.11, November 2007, pp.2683−2690 http://www.jos.org.cn 
DOI: 10.1360/jos182683  Tel/Fax: +86-10-62562563 
© 2007 by Journal of Software. All rights reserved. 

 

PRAM 和 LARPBS 模型上有向序列翻转距离并行算法
∗

 

沈一飞 1,2+,  陈国良 1,2,  张强锋 1,2 

1(中国科学技术大学 计算机科学技术系,安徽 合肥  230027) 
2(国家高性能计算中心(合肥),安徽 合肥  230027) 

Parallel Algorithms for Reversal Distance of Permutations on PRAM and LARPBS 

SHEN Yi-Fei1,2+,  CHEN Guo-Liang1,2,  ZHANG Qiang-Feng1,2 

1(Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) 
2(National High Performance Computing Center at Hefei, Hefei 230027, China) 

+ Corresponding author: Phn: +86-551-3601548, Fax: +86-551-3601013, E-mail: shenyf@ustc.edu 

Shen YF, Chen GL, Zhang QF. Parallel algorithms for reversal distance of permutations on PRAM and 
LARPBS. Journal of Software, 2007,18(11):2683−2690. http://www.jos.org.cn/1000-9825/18/2683.htm 

Abstract:  This paper presents two parallel algorithms to compute reversal distance of two signed permutations on 
different models. These two algorithms are based on Hannenhalli and Pevzner’s theory and composed of three key 
steps: Construct break point graph, compute the number of cycles in break point graph and compute the number of 
hurdles in break point graph. The first algorithm runs in O(log2n) time using O(n2) processors in SIMD-CREW 
model. The second one can solve the problem in O(logn) bus cycles by using O(n3) processors on the linear array 
with a reconfigurable pipelined bus system (LARPBS). 
Key words:  parallel algorithm; optical bus parallel model; reversal distance; genome rearrangements; sequence 

comparison; CREW-PRAM model 

摘  要: 分别在两种重要并行计算模型中给出计算有向基因组排列的反转距离新的并行算法.基于Hannenhalli和
Pevzner 理论,分 3 个主要部分设计并行算法:构建断点图、计算断点图中圈数、计算断点图中障碍的数目.在
CREW-PRAM 模型上,算法使用 O(n2)处理器,时间复杂度为 O(log2n);在基于流水光总线的可重构线性阵列系统

(linear array with a reconfigurable pipelined bus system, LARPBS)模型上,算法使用 O(n3)处理器,计算时间复杂度为

O(logn). 
关键词: 并行算法;光总线并行模型;反转距离;基因组重排;序列比较;CREW-PRAM 模型 
中图法分类号: TP301   文献标识码: A 

1   Introduction 

Computing reversal distance of two signed permutations has gained increasing attention over the last decade 
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with the study of genome rearrangements in computational molecular biology. It plays an important role in checking 
DNA sequences similarity at the level of genome and finding evolutionary relationship between species. 

A signed permutation is a permutation π={π1,π2,…,πn} on the set of integers {1,2,…,n} whose each element 
has a sign of plus or minus. A reversal ρ(i,j) on permutation π transforms π to 
 π′=π⋅ρ(i,j)={π1,…,πi−1,−πj, −πj−1,…, −πi+1, −πi, −πj+1, ..., πn } (1) 

The reversal distance of two permutations is the minimum number of reversals needed to transform one to 
another permutation. The problem of computing reversal distance of permutation π is to find the minimum number 
of reversals needed to transform π to identical permutation {1,2,…,n}. 

In 1995, Hannenhalli and Pevzner[1,2] built a basic theory about how a signed permutation is sorted by reversals 
and gave the first polynomial-time algorithm to solve the problem of sorting a signed permutation by reversals, 
which runs in O(n2) time when restricted to distance computation. In 1996, a O(n2α(n)) reversal sorting algorithm 
was given by Berman and Hannenhalli[3], where α(n) is the Ackerman’s function, it also provided the distance as a 
byproduct. Bader, Moret and Yan[4] showed how to compute reversal distance in the linear time. More recently, 
Bergeron[5] presented another O(n) time algorithm for problem of reversal distance. 

In this paper we present two parallel algorithms for computing reversal distance of a signed permutation of n 
elements that are based on Hannenhalli and Pevzner’s theory and composed of three steps. The first algorithm 
consists three parts and runs in O(log2n) time using O(n2) processors in SIMD-CREW model[9]. The second one can 
solve the problem in O(logn) bus cycles by using O(n3) processors on the Linear Array with a Reconfigurable 
Pipelined Bus System (LARPBS) which has been investigated in Ref.[6] for designing fast algorithms from 
different domains. To our best knowledge, this is the best time complexity parallel algorithm. 

2   Preliminary Definitions 

In this section we introduce the basic background for our algorithms. The exposition follows closely the 
Hannenhalli and Pevzner’s theory[1,2]. 

2.1   Basic definitions 

Given a signed permutation π of {1,2,…,n}, we transform it into an unsigned permutation π′ of {1,2,…,2n−1, 
2n} by replacing each positive element x in π by 2x−1 and 2x, and each negative element x by 2x and 2x−1, then 
extend permutation to the set {0,1,…,2n,2n+1} by setting π0=0 and π2n+1=2n+1. We represent an extended unsigned 
permutation with a breakpoint graph of the permutation. The breakpoint graph has 2n+2 vertices; for each i, 1≤i≤n, 
we join vertices π2i and π2i+1 by a black edge and vertices whose values are 2i and 2i+1 by a gray edge. Notice that a 
gray edge (πk,πl) is oriented if the sum of k+l is even, otherwise is unoriented. The resulting breakpoint graph 
consists of disjoint cycles in which edges alternate colors. A cycle in breakpoint graph is oriented if it has an 
oriented gray edge and unoriented otherwise. 

Gray edges (πi,πj) and (πk,πl) are overlapping whenever the two intervals [i,j] and [k,l] overlap, but neither 
contains the other. The overlap graph of a permutation π, denoted by OV(π), is the overlap graph of the gray edges 
of B(π). In other words, the node set of OV(π) is the set of gray edges in B(π), and two nodes are connected by an 
arc if two gray edges overlap. We shall identify a node in OV(π) with the edge it represents and with its interval in 
the representation. Thus, the endpoints of a gray edge are actually the endpoints of the interval representing the 
corresponding node in OV(π). A connected component of OV(π) that contains an oriented edge is called an oriented 
component, otherwise, it is called an unoriented component. 

Let M be an unoriented connected component in OV(π). Let E(M) be the set of end points of the edges in M. An 
unoriented component of π is a hurdle if the elements belonged to E(M) occur consecutively, in the other words, the 
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elements belonged to E(M) must be an interval from i to (i+j) or from i to (i+j)modn, whose set of elements is 
(i,…,i+j) but not in a single two-edged circle components. A hurdle is a simple hurdle if when one deletes it from 
OV(π) no other unoriented component becomes a hurdle, otherwise is a super hurdle. Permutation π is called 
fortress if it has an odd number of hurdles and all these hurdles are super hurdles (Fig.1). 

 
 
 
 

(a) The breakpoint graph B(π) for the permutation π=(2,1,−6,−3,7,−5,4) 

2,3                            12,13                        10,11                         14,15

0,1                            4,5                              6,7                            8,9  

(b) The overlap graph OV(π). Black vertices correspond to oriented edges 

Fig.1 

Lemma 1. For a signed permutation π of order n, d(π)=n−c(π)+h(π)+f(π), where c(π), h(π) and f(π) are the 
numbers of cycles, hurdles and, fortress in the breakpoint graph of the permutation π. 

2.2   The LARPBS model 

The LARPBS model connects its processors by an optical bus that uses optical waveguide instead of electrical 
bus to transfer messages among processors. The advantages of using optical waveguide are high propagation speed, 
unidirectional propagation and predictable propagation delay per unit length. The last two properties enable 
synchronized concurrent accesses of an optical bus in a pipelined fashion. 

LARPBS can be partitioned into i≥2 independent subarrays, such those subarrays can be operated as regular 
linear arrays with pipelined optical bus systems, and all subarrays can be used independently for different 
computations without interference[6,7,9](Fig.2). 

 
 
 
 
 
 
 
 

Fig.2  (Source [7]) The LARPBS model of size 6 with two subarrays 

The measure of computational complexity on a LARPBS is the number of bus cycles used for the computation 
and the amount of time spent by the processors for local computations. A bus cycle is the time needed for 
end-to-end message transmission over a bus and assumed to take only O(1) time. 

The following basic communication, data movement, and global operations on the LARPBS are used in this 

0    3  4      1  2      12  11   6  5     13  14    10   9    7   8      15 

P3 P4P1 P2 P6P5

P Processor 1×2switch 2×1switch 
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paper. The reader is referred to [6,7,9] for the implementation details of these operations. 
Lemma 2[6,7,9]. One-to-One communication, broadcasting, multicasting and multiple multicasting, all can be 

done in O(1) bus cycles on the LARPBS model. 
Lemma 3[6,7,9]. For a LARPBS with n processors and n binary values vi, 0≤i≤n−1, the binary prefix sum 

requires the computation of psumi=v0+v1+…+vi−1, for all 0≤i≤n−1. It can be done in O(1)bus cycles on the LARPBS 
model. 

Lemma 4[9]. Sorting n numbers can be performed in O(1) bus cycles on the LARPBS model with O(n2) 
processors. 

3   Algorithms 

In this section, the complete algorithms for computing reversal distance are presented. 
The Complete Algorithm Framework. 
Input: Signed permutation π; 
Output: Reversal distance of permutation π. 
Step 1. Construct break point graph B(π) of permutation π (Algorithm 1, Fig.3); 
Step 2. Compute the number c(π) of cycles in B(π) (Algorithm 2, Fig.4); 
Step 3. Construct overlap graph OV(π) of permutation π based on break point graph B(π) built in Step1; find all 

components in B(π) and compute the number h(π) of hurdles in B(π); 
Step 4. Determine whether breakpoint graph B(π) is a fortress f(π) and compute the reversal distance of π, 

d(π)=n−c(π)+h(π)+f(π). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3  The framework of Algorithm 1: construct breakpoint graph 

Algorithm 1 constructs break point graph B(π) of permutation π in parallel. The part of lines (1~8) in 
Algorithm 1 transforms permutation π into an unsigned permutation according to the precious definition. For each i: 
1≤i≤n, we join vertices a2i and a2i+1 by a black edge (9~11). We also need join vertices whose values are 2i and 2i+1 
by a gray edge. Assume we need to connect ax=2i and ay=2i+1, from lines (12~14) we can get b2i=x and b2i+1=y and 

connect
2 2 1

( , )
i ib ba a

+
 with a gray edge. 

Algorithm 1. Construct breakpoint graph 
Input: Permutation; 
Output: Breakpoint graph of permutation. 
 1  for each i: 1≤i≤n pardo 
 2    if πi>0 then 
 3      a2i−1←2πi−1, a2i←2πi 
 4    else 
 5      a2i−1←2|πi|, a2i←2|πi|−1 
 6    endif 
 7  endfor 
 8  a0←0, a2n−1←2n+1 
 9  for each i: 1≤i≤n pardo 
 10   connect (a2i,a2i+1) with a black edge 
 11 endfor 
 12 for each i: 1≤i≤n pardo 
 13  

2iab ←2i, 
2 1iab

−
←2i−1 

 14 endfor 
 15 for each i: 1≤i≤n pardo 
 16  connect (

2iba ,
2 1iba

−
) with a gray edge 

 17 endfor 
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Algorithm 2 finds all cycles in the breakpoint graph B(π) in parallel. In Algorithm 2, a cycle is labeled with the 
minimum vertex index of that cycle, and for each vertex πI, we set c(i) with the label of its cycle. Lines (1~3) are to 
initialize c(i) with the vertex index; for the part of lines (4~16) in Algorithm 2, we use the point jumping method 
that is sufficed to show that, after kth iteration, for each vertex i, c(i) must be the minimum vertex index within 2k 
distance. It is easy to see that in each cycle, there is only one vertex whose index value(c(i)) remains unchanged 
after the iteration part. We set csum(i)=1 if c(i)=i, otherwise csum(i)=0, then parallelly compute the sum of csum(i). 

By parallelly detecting every pair of edges (O(n2) pairs), the overlap graph OV(π) can be built in O(1) time 
using O(n2) processors. The method to find components used by Algorithm 3 is similar to Algorithm 2. Because 
each node in OV(π) has at most O(n) adjacent nodes, there remain some differences: line 7 and Algorithm 3 need to 
find the minimum number in O(n) numbers; to avoid writing confliction, we specify an array in each node. For any 
node j, if d(j)<c(c(j)): c(j)=i, we set wi(j)=d(j) at node i (lines 9~16)(Fig.5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  The framework of Algorithm 2:         Fig.5  The framework of Algorithm 3: 
Find all cycles in breakpoint graph            Find all components of permutation 

3.1   Parallel algorithms on SIMD-CREW model 

Theorem 1. Break point graph B(π) of permutation π of {1,…,n} can be constructed in a constant time using n 
processors on SIMD-CREW model. 

Proof:  In all parts of Algorithms 1, processors don’t read and write the same memory places. It is easy to get 
that Algorithm 1 can run in a constant time using n processors on SIMD-CREW model. □ 

Theorem 2. Finding all cycles in BP Graph takes O(logn) time using O(n) processors on SIMD-CREW model. 
Proof:  The parts of lines (1-3) and (17-22) in Algorithm 2 both use O(1) time; for the part of lines (4-16), 

after the kth iteration, for each vertex i, c(i) will be the minimum vertex index within 2k distance, and that is to say, 
after O(logl) iterations, each vertex of graph will be covered and each iteration uses a constant time. (l is the max 

Algorithm 2. Find all cycles in breakpoint graph. 
Input: Breakpoint graph; 
Output: All cycles in breakpoint graph. 
 1  for each i: 1≤i≤2n+1 pardo 
 2    c(i)←i 
 3  endfor 
 4  repeat 
 5    for each i: 1≤i≤2n+1 pardo 
 6      d(i)←min{c(j)|j are vertex adjacent to i} 
 7    endfor 
 8    for each i: 1≤i≤2n+1 pardo 
 9      if d(i)<c(c(i)) then 
 10       c(c(i))←d(i) 
 11     endif 
 12   endfor 
 13   for each i: 1≤i≤2n+1 pardo 
 14     c(i)←c(c(i)) 
 15   endfor 
 16  until all c(i)=d(i) 
 17  for each i: 1≤i≤2n+1 pardo 
 18    csum(i)←0 
 19    if c(i)=i then 
 20      csum(i)←1 
 21    endif 
 22  endfor 
 23  parallel computing sum of csum(i): 1≤i≤2n+1

Algorithm 3. Find all components of permutation. 
Input: Breakpoint graph; 
Output: All components in breakpoint graph. 
 1  for each node i: 1≤i≤n in OV(π) pardo 
 2    c(i)←min{bi,ei|bi and ei are the endpoints of gray edge i}
 3  endfor 
 4  a0←0, a2n−1←2n+1 
 5  repeat 
 6    for each node i: 1≤i≤n in OV(π) pardo 
 7   d(i)←min{c(j)|j are node adjacent to i} 
 8    endfor 
 9    for each node i: 1≤i≤n in OV(π) pardo 
 10      if d(i)<c(c(i)) then 
 11        wc(i)(i)←d(i) 
 12      endif 
 13   endfor 
 14   for each node i: 1≤i≤n in OV(π) pardo 
 15      c(i)←min{wi(j)|j: 1≤j≤n} 
 16    endfor 
 17    for each node i: 1≤i≤n in OV(π) pardo 
 18      c(i)←c(c(i)) 
 19    endfor 
 20  until all c(i)=d(i) 



 

 

 

2688 Journal of Software 软件学报 Vol.18, No.11, November 2007   

 

length of cycles, l≤n.) The base case is trivial: parallel computing sum of n numbers runs O(logn) time with n 
processors on SIMD-CREW model. Algorithm 2 uses O(logn+logl) (l at most is n ) time, so the time complexity of 
Algorithm 2 is O(logn). □ 

Theorem 3. Finding components in permutation π takes O(log2n) time using O(n2) processors on 
SIMD-CREW model. 

Proof:  As mentioned before, Line 1 in Algorithm 3 uses O(1) time; Like Algorithms 2, after at most O(logn) 
iterations (lines 2~20), we can get the final result. The parts of lines (6~8) and (14~16) in iteration of Algorithm 3 
need O(logn) time with n processors to compute the minimum number. The entire step uses O(log2n) time with 
O(n2) processors. □ 

Lemma 5. Whether a component of OV(π) is a hurdle can be determined in O(logn) time using O(n) processors 
on SIMD-CREW model. 

Proof:  According to the definition of hurdle, we need two steps to test a component: first, checking whether 
the component is unoriented component just needs to know whether all edges are unoriented; second, checking if 
there is no other component between start and end of it except for two-edged simple cycles. Both steps can 
complete in a constant time with n processors in SIMD-CREW model. We gather all data in O(logn) time. □ 

Theorem 4. The number of hurdles can be counted in O(logn) time with O(n2) processors on SIMD-CREW 
model. 

Proof:  There are at most O(n) components in the permutation π. We can prove that all components can be 
determined in constant time using O(n2) processors as mentioned in Lemma 5. If a component is hurdle, we set 
h(i)=1, otherwise h(i)=0. Parallel computing sum of h(i) takes O(logn) time with n processors. □ 

Theorem 5. Whether the permutation is fortress can be determined in O(log2n) time with O(n2) processors on 
SIMD-CREW model. 

Proof:  We delete all hurdles, and then compute the number of hurdles in the remaining graph. If the number 
of hurdles in the remaining graph is equal to the number before deleting and the number is odd, f(π)=1. That can be 
completed in O(log2n) time with n2 processors on SIMD-CREW model. □ 

Theorem 6. Computing reversal distance of permutation π takes O(log2n) time with O(n2) processors on 
SIMD-CREW model. 

Proof:  The steps of the algorithm at most take O(log2n) time with O(n2) processors on SIMD-CREW model, 
so the entire algorithm runs in the worst-case O(log2n) time on SIMD-CREW model. □ 

3.2   Parallel algorithms on LARPBS 

Theorem 7. Break point graph B(π) of permutation π of {1,…,n} can be constructed in constant bus cycles 
using O(n) processors on LARPBS. 

Proof:  rocessors can exchange data by using one-to-one communication that is a constant time operation, so 
Algorithm 1 also can run in constant bus cycles on a LARPBS of n processors. □ 

Theorem 8. Finding all cycles in BP Graph runs O(logn) bus cycles on a LARPBS of O(n) processors. 
Proof:  he parts of lines (5~7) and lines (13~15) of Algorithm 2 both need to use multiple multicasting that 

takes O(1) time (Lemma 2), and the operation of computing sum (line 23) only needs O(1) time (Lemma 3) which is 
different from SIMD-CREW model. The iteration part also needs O(logn) bus cycles, then Algorithm 2 runs O(logn) 
bus cycles on a LARPBS of O(n) processors. □ 

Theorem 9. Finding components in permutation π performs O(logn) time using LARPBS of O(n3) processors. 
Proof:  The parts of lines (5~19) of Algorithm 3 need to use multiple multicasting that just needs O(1) time as 

mentioned in Lemma 2, and the parts of lines (6~8) and (14~16) use O(1) time with O(n3) processors (Lemma 4) 
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that is different from SIMD-CREW model. The iteration part also needs O(logn) bus cycles, so Algorithm 3 runs 
O(logn) bus cycles on a LARPBS of O(n3) processors. □ 

Lemma 6. Whether a component of OV(π) is a hurdle can be determined in constant bus cycles using O(n) 
processors on LARPBS. 

Proof:  According to the definition of hurdle, we need two steps to test a component: first, checking whether 
the component is unoriented component just needs to know whether all edges are unoriented; second, checking if 
there is no other component between start and end of it except for two-edged simple cycles. Both steps can 
complete in constant time with n processors in LARPBS. But in LARPBS, we can gather all data in constant time. □ 

Theorem 10. The number of hurdles can be counted in constant bus cycles with O(n2) processors on LARPBS. 
Proof:  There are O(n) components in the permutation π. All components can be determined in O(1) time 

using O(n2) processors as mentioned in Lemma 6. If a component is a hurdle, we set h(i)=1, otherwise h(i)=0. 
Parallelly computing the sum of h(i) can run O(1) time with O(n2) processors, as mentioned in Lemma 3. □ 

Theorem 11. Whether the permutation is fortress can be determined in constant bus cycles on a LARPBS of 
O(n3) processors. 

Proof:  The proof is the same as Theorem 5. □ 
Theorem 12. Computing reversal distance of permutation π performs O(logn) time on a LARPBS of O(n3) 

processors. 
Proof:  Because the steps of the algorithms at most take O(logn) time as mentioned before, so the entire 

algorithm runs in the worst-case O(logn) time on a LARPBS of O(n3) processors. □ 

4   Conclusions 

Two parallel algorithms for computing the reversal distance between two signed permutations have been 
presented in this paper. The time complexities of the algorithms are O(log2n) on SIMD-CREW model and O(logn) 
on LARPBS model. Because certain operations such as computing prefix sum and sorting a smaller set of data can 
be done in constant time on the LARPBS model, we are able to take advantage of them and to make the algorithm 
faster than PRAM. We believe many other algorithms can also take advantage of the high communication 
bandwidth on the LARPBS model. In addition, there are some problems concerning in this paper for the future 
work, such as, whether the time complexity and computational cost of the algorithm can be further improved. We 
expect to see more results published in this area in the future. 
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