首页 | 本学科首页   官方微博 | 高级检索  
     

用于CS的广义稀疏度自适应匹配追踪算法
引用本文:马玉双,刘翠响,郭志涛,王宝珠. 用于CS的广义稀疏度自适应匹配追踪算法[J]. 计算机工程与应用, 2019, 55(13): 207-211. DOI: 10.3778/j.issn.1002-8331.1804-0067
作者姓名:马玉双  刘翠响  郭志涛  王宝珠
作者单位:河北工业大学 电子信息工程学院,天津,300401;河北工业大学 电子信息工程学院,天津,300401;河北工业大学 电子信息工程学院,天津,300401;河北工业大学 电子信息工程学院,天津,300401
摘    要:压缩感知理论的基本思想是原始信号在某一变换域是稀疏的或者是可压缩的,并将奈奎斯特采样定理中的采样过程和压缩过程合二为一。稀疏度自适应匹配追踪(SAMP)算法能够实现稀疏度未知情况下的重构,而广义正交匹配追踪算法每次迭代时选择多个原子,提高了算法的收敛速度。基于上述两种重构算法的优势,提出了广义稀疏度自适应匹配追踪(Generalized Sparse Adaptive Matching Pursuit,gSAMP)算法。针对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标,以及主观视觉上对所提算法与传统的贪婪算法进行对比。在压缩比固定为0.5时,gSAMP算法的重构效果优于传统的MP、OMP、ROMP、SAMP以及gOMP贪婪类重构算法的效果。

关 键 词:压缩感知  稀疏度自适应匹配追踪  稀疏度  广义正交匹配追踪  贪婪类重构算法

Generalized Sparse Adaptive Matching Pursuit Algorithm for CS
MA Yushuang,LIU Cuixiang,GUO Zhitao,WANG Baozhu. Generalized Sparse Adaptive Matching Pursuit Algorithm for CS[J]. Computer Engineering and Applications, 2019, 55(13): 207-211. DOI: 10.3778/j.issn.1002-8331.1804-0067
Authors:MA Yushuang  LIU Cuixiang  GUO Zhitao  WANG Baozhu
Affiliation:School of Electronic and Information Engineering, Heibei University of Technology, Tianjin 300401, China
Abstract:The basic idea of compressed sensing theory is that the original signal is sparse in a transform domain or compressible, and the sampling process and the compression process in the Nyquist sampling theorem are combined into one. Sparse Adaptive Matching Pursuit(SAMP) algorithm can realize the reconstruction under unknown sparsity, and the generalized orthogonal matching pursuit algorithm selects multiple atoms at each iteration, which improves the convergence speed of the algorithm. This paper proposes a Generalized Sparse Adaptive Matching Pursuit(gSAMP) algorithm based on the advantages of the above two reconstruction algorithms, and then the peak signal to noise ratio, reconstruction time, relative error, etc. of the reconstructed image are proposed. Objective evaluation indicators and subjective visual comparisons of the proposed algorithm and the traditional greedy algorithm. When the compression ratio is fixed at 0.5, the reconstruction effect of the gSAMP algorithm is better than that of the traditional greedy reconstruction algorithms such as MP, OMP, ROMP, SAMP and gOMP.
Keywords:compressed sensing  Sparsity Adaptive Matching Pursuit(SAMP)  sparsity  generalized orthogonal matching pursuit  greedy reconstruction algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号