首页 | 官方网站   微博 | 高级检索  
     


Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry
Authors:Henok D Belayneh  Randy L Wehling  Edgar B Cahoon  Ozan N Ciftci
Affiliation:1. Dept. of Food Science and Technology, Univ. of Nebraska‐Lincoln, Lincoln, NE, U.S.A;2. Center for Plant Science Innovation and Dept. of Biochemistry, Univ. of Nebraska‐Lincoln, NE, U.S.A
Abstract:Camelina seed is a new alternative omega‐3 source attracting growing interest. However, it is susceptible to oxidation due to its high omega‐3 content. The objective of this study was to improve the oxidative stability of the camelina seed oil at the extraction stage in order to eliminate or minimize the use of additive antioxidants. Camelina seed oil extracts were enriched in terms of natural antioxidants using ethanol‐modified supercritical carbon dioxide (SC‐CO2) extraction. Oxidative stability of the camelina seed oils extracted by ethanol modified SC‐CO2 was studied by differential scanning calorimeter (DSC), and compared with cold press, hexane, and SC‐CO2 methods. Nonisothermal oxidation kinetics of the oils obtained by different extraction methods were studied by DSC at varying heating rates (2.5, 5, 10, and 15 ° C/min). Increasing ethanol level in the ethanol‐modified SC‐CO2 increased the oxidative stability. Based on oxidation onset temperatures (Ton), SC‐CO2 containing 10% ethanol yielded the most stable oil. Oxidative stability depended on the type and content of the polar fractions, namely, phenolic compounds and phospholipids. Phenolic compounds acted as natural antioxidants, whereas increased phospholipid contents decreased the stability. Study has shown that the oxidative stability of the oils can be improved at the extraction stage and this may eliminate the need for additive antioxidants.
Keywords:camelina  differential scanning calorimetry  extraction  oxidation  supercritical carbon dioxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号