
Int J Software Informatics, Volume 6, Issue 2 (2012), pp. 163–200 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2012 by ISCAS. All rights reserved. Tel: +86-10-62661040

Unifying the Semantics of Models and Meta-Models

in the Multi-Layered UML Meta-Modelling

Hierarchy

Lijun Shan1 and Hong Zhu2

1 (National Digital Switching System Engineering and Technological Research Center,

Zhengzhou 450002, China)

2 (Department of Computing and Communication Technologies, Oxford Brookes University,

Oxford OX33 1HX, UK)

Abstract UML is defined through metamodelling in a four-layer metamodel hierarchy,

where metamodels and meta-metamodels are also presented in the form of UML class di-

agrams. However, the meanings of models and metamodels as well as the basic concepts

involved in modelling and metamodelling are not precisely defined in the OMG documen-

tations. In the past few years, a large amount of research efforts on the formalisation of

UML semantics has been reported in the literature, but how to formalise the metamodel

hierarchy still remains an open problem. This paper presents a framework of unified formal

semantics of the metamodel hierarchy. It is based on our previous work on the formal se-

mantics of UML, in which we proposed the notions of descriptive semantics and functional

semantics as two separate aspects of UML semantics. The former describes the structure of

a model’s instances, and the latter characterises the functional and behavioural properties

of its instances. This paper further develops this approach by generalising it to metamodels

and meta-metamodels. We prove that the semantics of models, metamodels and meta-

metamodels can be defined in a unified way. The basic concepts involved in the metamodel

hierarchy, such as subject domain and instance-of relation, can also be precisely defined

based on the unified semantics framework.

Key words: software models; unified modelling language UML; metamodel; metamodel

hierarchy; formal semantics

Shan LJ, Zhu H. Unifying the semantics of models and meta-models in the multi-layered

UML meta-modelling hierarchy. Int J Software Informatics, Vol.6, No.2 (2012): 163–200.

http://www.ijsi.org/1673-7288/6/i118.htm

1 Introduction

Models are created and used as the main artefacts of software engineering in the

model-driven development methodology. By raising the level of abstraction in software

development, model-driven engineering (MDE) facilitates a wide range of automation

from architectural design to integration, testing, maintenance and evolution. With

the introduction of the Unified Modelling Language (UML), MDE has become very

popular today with a large body of practitioners and a wide availability of supporting

Corresponding author: Lijun Shan, Email: slj@ndsc.com.cn
Received 2011-04-03; Revised 2011-09-25; Accepted 2011-09-29; Published online 2012-02-16.

164 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

tools. However, the lack of a rigorous definition of the semantics of UML has been a

long lasting issue.

1.1 UML and its metamodel hierarchy

UML is defined through metamodelling; i.e. a metamodel is employed to specify

the UML modelling language. A metamodel is a model of some syntactically valid

models. Due to the need to define the syntax and semantics of the metamodel, a

meta-metamodel is further specified. This leads a four-layer metamodel hierarchy,

where a model at layer i is an instance of some model at layer (i+1), for i ∈{0, 1,

2}. Following the terminology used in the UML documentation[2], in the sequel we

write ‘an Mi model’ to denote ‘a model at layer i’. In particular, a system in the

real world is regarded as an M0 model, which is an instance of a user model (an

M1 model) in the UML language. The metamodel of UML is an M2 model. The

meta-metamodel of UML, called MOF (MetaObject Facility) model, is the only M3

model in the four-layer metamodel hierarchy. MOF is intended to be the core of many

MDE technologies including UML, CWM (Common Warehouse Metamodel), SPEM

(Software & Systems Process Engineering Metamodel), XMI (XML Metadata Inter-

change), etc.[3]. According to the UML and MOF documentations[2, 3], the hierarchy

is allowed to have more than 4 layers.

The metamodel and the meta-metamodel of UML are actually defined in the

UML’s class diagram notation. Therefore, this metamodelling approach is reflective

in the sense that the modeling language is defined in its own notation. Because the

notation of UML class diagram is fairly self-descriptive, this approach works well to

some extent. UML class diagram incarnates the idea of object-orientation using nodes

to denote classifications of objects and edges to denote relationships between objects.

In fact, a metamodel can be regarded as a representation of the ontology underlying a

modelling language. In the metamodel of UML, for instance, concepts such as Class,

Property and Generalisation are represented as classes and depicted as nodes in a

class diagram, and generalisation/specialisation and whole-part relationships between

the concepts are represented as inheritances and compositions and depicted as edges

between the class nodes. In the same way, concepts used in a metamodel can be

classified and depicted in a class diagram at a higher layer, i.e. a meta-metamodel.

1.2 Problem identification

However, this appealing feature of reflective uses of class diagrams in modelling

and meta-modelling imposes a great challenge to defining the semantics of UML. That

is, can the semantics of UML class diagram be applied to all layers uniformly in the

metamodel hierarchy?

Although the metamodel hierarchy is fairly well described and intuitively under-

standable, the basic notions involved in modelling and metamodelling are not precisely

and rigorously defined in the OMG documentations. A key question we are concerned

with is the exact meaning of the ‘instance of’ relation between an Mi model and an

Mi+1 model in the metamodel hierarchy. According to the UML documentations,

real world systems or software systems can be regarded as instances of a UML model.

However, little has been said about how to judge whether a system is an instance

of a model. Take a simple class diagram that contains one and only one class node

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 165

labelled with identifier A as an example. It can be interpreted in any of the following

ways, while the official UML documentation does not specify which one is correct.

• There is only one class in the system and it is named A.

• There is at least one class named A in the system (which may have other

classes).

• There is only one class in the system and its name does not matter .

• There is at least one class in the system and its name does not matter .

In our previous work Refs. [1,4], we argued that each of the above interpreta-

tions of the instance-of relation between real world systems and UML models has

its own role in software development. Therefore, all of them should be regarded as

valid semantics of UML models. In order for the semantics of UML to incorporate

all these interpretations, we have introduced the notion of usage context of models.

Given a specific usage context, the hypothesis on how to interpret a model can be

explicitly described as a part of the semantics of the model. However, the instance-of

relation between models and metamodels cannot be so flexible. For example, given

a metamodel which contains only one class node named Classifier, it can only be

interpreted to: there is one and only one type of elements in the model, and the type

is Classifier. A model that contains elements of other types is not an instance of the

metamodel, because such types are undefined. The above two examples reveal that

the instance-of relation between M0 and M1 is different from that between M1 and

M2. A question is: can we identify and formally specify the usage contexts of class

diagrams for their uses as metamodels and meta-metamodels?

Considering the whole multi-layer metamodel hierarchy, the above questions can

be generalised into: (a) What are the relationships between any two models at adja-

cent layers in the metamodel hierarchy? (b) Can the semantics of models at different

layers be unified in one rigorous and precise semantic definition?

This paper addresses these problems with a unified semantic framework for the

metamodel hierarchy. In our previous work on the formal semantics of UML, we

have proposed the notions of descriptive semantics and functional semantics as two

separate aspects of UML semantics. The former describes the structure of a model’s

instances by specifying element types that can be used in the models’ instances and

relationships between the elements, while the latter characterises the functional and

behavioural properties of its instances. This paper further develops this approach

by generalising it to a unified definition of the semantics of metamodels and meta-

metamodels. In fact, the framework can be extended to any number of layers of

metamodelling. Descriptive semantics and functional semantics of models are defined

through two mappings from class diagrams to predicate logic formulas, respectively.

The functional semantics of a model at any layer can be specified independent of

its descriptive semantics and then integrated with descriptive semantics to form a

complete semantics of the model. The basic concepts involved in the metamodel

hierarchy, such as instance-of relation and subject domain, are precisely defined. The

valid instances of an Mi model M are, mathematically speaking, structures in the

signature determined by the model M and satisfying the formulas that represent

the descriptive and functional semantics of M . The subject domain of a modelling

language, i.e. the collection of systems that can be described by the language, can

then be defined as the set of instances of the metamodel specifying the language.

166 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

1.3 Organisation of the paper

The paper is organised as follows. Section 2 outlines our approach. Section 3

formally defines the basic concepts of the UML metamodel hierarchy. Section 4 is

devoted to the descriptive semantics of models at all layers of the hierarchy. We

present a set of rules that translate a model into a set of descriptive statements. We

also identify the context of using class diagrams as Mi layer models for i > 1, and

specify the context as a set of rules that derive formulas from models. Section 5

presents a set of axioms of OO concepts as the static functional semantics of UML

models. Section 6 integrates the descriptive semantics and functional semantics by a

set of rules that derives a set of statements representing the functional semantics of

models. Section 7 discusses the application of the formal semantics of UML in model-

driven software development. Section 8 compares our work with related work. Finally,

Section 9 summarises the main contributions of this paper and discusses future work.

2 Overview of the Proposed Approach

For example, consider the UML class diagram CD1 depicted in Fig. 1. Informally,

from the descriptive point of view, the semantics of the model is a set of statements

such as

− Person is a class ;

− Woman is a class ; and

− Woman is a subclass of Person.

Figure 1. An M1 model

These statements can be formally represented in predicate logic formulas as

Class(Person), Class(Woman), and Inherits(Woman, Person), respectively. To judge

whether a give system S (such as a program written in Java) is an instance of the

model, we evaluate whether the following is true:

S |= Class(Person)∧Class(Woman)∧Inherits(Woman, Person).

It can be evaluated without referring to the behaviour of class and the properties

of subclass/inheritance relation. For example, consider the Java program skeleton

given in Fig. 1(b). We can judge that it is an instance of the model by recognizing

that Person is a class and Woman is also a class and there is an inheritance relation

from Woman to Person.

From functional semantics point of view, the semantics of the model CD 1 in Fig.1

contains a set of statements like the following:

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 167

− Person is a set of objects ;

− Woman is a set of objects ;

− Any object of Woman is also an object of Person, etc.

Using predicate logic formulas, we write Person(x) to represent ‘object x is a

Person’, and Woman(x) for “object x is a Woman”. Then, the third statement

above can be represented formally as ∀x. (Woman(x) →Person(x)). This statement

imposes a constraint on the dynamic behaviour of a system, e.g. a Java program, as

an instance of the model. From the functional semantics point of view, the model

depicted in Fig. 1 also contains many other statements. For example, it also states

that any attribute of Person is also an attribute of Woman. Here we only give some

examples of such statements for the purpose of illustration.

In Ref. [1], we have developed a formal descriptive semantics of UML by defining

mappings from UML models into predicate logic. As shown in Fig. 2, the mappings

consist of the following sets of rules:

− Sig : signature mapping, which maps a metamodel N to a set of unary and

binary predicate symbols and constant symbols. These symbols form a signature of

predicate logic language.

− Axm: axiom mapping, which maps a metamodel N into a set of formulas over

the signature Sig(N). Axm(N) represents the functional semantics of metamodel N ,

which is a set of statements that must be satisfied by the models as instances of N.

− Sem: semantic mapping, which maps a model D into a set of formulas over

the signature Sig(N), where N is a metamodel of D. Sem(D) describes the content

of D in terms of types of the elements in D and relationships between the elements.

− Hyp: hypothesis mapping, which maps a model D into a set of formulas over

Sig(N) , where N is the metamodel of D. Hyp(D) represents the hypothesis on how

D is interpreted in a specific context.

Figure 2. Framework of the formal descriptive semantics[1]

Given a model D as an instance of metamodel N , the descriptive semantics of D

is the set Axm(N)∪ Sem(D)∪ Hyp(D) of formulas over signature Sig(N).

The above mappings have been implemented in a prototype tool called LAMB-

DES, which is integrated with a theorem prover SPASS[6] to enable automated reason-

ing about models. The mappings have been successfully applied to the class diagram,

sequence diagram and state machine diagram of UML. Descriptive semantics of UML

168 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

models has been used to check the consistency of models[4], to recognise design pat-

terns in models and to analyse relationships between design patterns[1]. The axiom

mapping on metamodels has been used to check if a metamodel is well-defined in

the sense that it is logically consistent[7] and if constraints imposed on M1 models

(e.g. well-formedness rules in OCL defined in the UML documentation or additional

consistency rules) are valid in the sense that they are logically consistent with the

metamodel.

In this paper, we demonstrate that the above view to the semantics of models can

equally be applied to models at other layers in the multi-layer metamodel hierarchy.

In particular, at M2 layer, OO concepts such as class and property are also used to

classify elements in a metamodel, but called metaclass and meta-property respectively

to avoid confusion. Take the class diagram CD2 in Fig. 3 as an example. From the

descriptive semantics point of view, the statements of the metamodel include:

− Classifier is a metaclass ;

− Class is a metaclass ; and

− Class inherits Classifier.

Figure 3. An M2 model CD2

The above statements of the metamodel can be formalised as the following set of

formulas.

{MetaClass(Classifier), MetaClass(Class), Inherits(Class, Classifier)}

From the functional semantics perspective, the inheritance arrow from metaclass

Class to Classifier states that any instance of Class is also an instance of Classifier.

This can be formalised as follows.

∀x.(Class(x) →Classifier(x))

The two aspects of semantics reveal that a metamodel in the multi-layer hierarchy

plays two roles:

− As an abstract syntax, it defines the structure of its instances. In an Mi model

(i > 1), classes define element types in the instances of the model, and properties of

the classes define inter-element relationships in the instances. This aspect is captured

by the descriptive semantics, which specifies the element types and the relationships

defined in a model with a set of first order formulas. The descriptive semantics of a

model can be used to check if a system is a model’s instance by examining whether

the types of the elements in the system and their relationships are valid with respect

to the model.

− As an ontological semantics, it defines a conceptual model of its instances. An

Mi model (i >1), which defines a modelling language or a meta-modelling language,

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 169

specifies the basic concepts underlying the language and the relationships between

the concepts. Hence, it can be regarded as defining the ontology underlying the

language. The functional semantics further characterises the basic concepts and their

relationships by a set of axioms about their properties.

It is worth noting that we recognise the existence of semantic information con-

tained in class diagrams when used as metamodels rather than merely abstract syn-

tax. We argue that a class diagram depicts an ontology or a conceptual model of the

subject domain. Viewing a metamodel as an ontology implies that the metamodel

contains important semantic information, though an ontology is far from complete to

define the semantics of a modelling language. For example, in the UML metamodel, a

metaclass named Class refers to the notion of class in object-oriented software devel-

opment paradigm. If the name is changed to something else, e.g. ‘box’, it no longer

refers to the notion of class in object-orientation, though the abstract syntax of UML

is unchanged.

Concerning the whole multi-layer metamodel hierarchy, we propose a semantic

framework for unifying the semantics of models at different layers. In this framework,

the key question ‘what is the instance-of relation?’ is answered in the following way.

First, we formally define the semantics of an Mi model M as a set of statements.

In the sequel, we will write JMK to denote the set of formulas that the model M

states. Thus, the ‘instance-of’ question is equivalent to ‘whether a system satisfies

the statements of the model’. In other words, a systems S is an instance of model M ,

if S satisfies the statements of M . In particular, as discussed above, the statements

that a model makes are represented as a set of formulas in a predicate logic language,

whose signature Σ is determined by its metamodel N . Moreover, we will divide the

set JMK into two subsets: JMKDes for the descriptive semantics, and JMKFun for the

functional semantics. We will present rules to derive the sets of formulas JMKDes and

JMKFun from a class diagram M .

Second, we use mathematical structures (called algebras for short) of certain

signature as abstract representations of systems in a subject domain. Therefore, the

subject domain of a modelling language can be defined as a set of mathematical struc-

tures in the signature of the language. By doing so, the model theory of mathematical

logics can be applied to formally define the satisfaction relationship |= between a sys-

tem S and a model M . Therefore, system S is an instance of model M can be formally

defined as S |= JMK. What’s important is that any Mi model (for all i > 0) can be

regarded as an algebra, too. Thus, the subject domains of models at all layers is

unified at a high level of abstraction.

Consequently, the statement ‘an Mi model M is an instance of an Mi+1 model

N ’ can also be formally translated into M |= JNK. When separating descriptive from

functional semantics, this is equivalent to M |= JNKDes ∪ JNKFun; or equivalently,

M |= JNKDes and M |= JNKFun. The former holds if M is a Σ-algebra, where

Σ=Sig(N). This can be checked by parsing M according to N .

Moreover, we represent the descriptive semantics JMKDes of M in the form of a set

of logic formulas that characterises the mathematical structures of its instances. It is

observed that the model M itself is also in that structure. Thus, the correctness of the

definition of descriptive semantics of class diagrams can be expressed as M |= JMKDes.

We prove the correctness of the rules to derive JMKDes from M in this paper.

170 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Furthermore, we define the functional semantics of UML class diagrams by a set

of axioms that characterises the concepts of object-orientation underlying UML class

diagrams. These axioms are represented in the form of higher order predicate logic

formulas. It is observed that this set of axioms is independent of the usage of the

class diagram, thus they are applicable to models and metamodels at all layers of the

metamodel hierarchy.

Finally, the descriptive semantics and functional semantics are integrated through

a set of rules that derive a set of first order logic formulas from models that all its

instances must satisfy. We prove that the rules are correct in the sense they can be

deduced from the functional and descriptive semantics.

The key feature of our approach is that the semantics of models/metamodels at

different layers is unified into one theory, where the mappings from M to JMKDes and

JMKFun is invariant to the layer in which the model is interpreted, and the definitions

of the concepts of metamodel hierarchy are identical for all layers.

3 Basic Concepts of Metamodel Hierarchy

In this section, we define the basic concepts of metamodel hierarchy. We start

with the concept of signatures of predicate logic languages and mathematical struc-

tures, and present a set of rules to derive signatures from models at all layers in the

UML metamodel hierarchy. Then, we define the notion of subject domain of models

and modelling languages, etc. Finally, we define the concept of instance-of relation.

3.1 Signature

Let’s first review the notion of signatures of predicate logic languages in which

formulas are written.

Definition 1. (Signature)

The signature Σ of a predicate logic language PrL consists of three disjoint finite

sets of symbols: a set Σ0 of constant symbols, a set Σ1 of unary predicate symbols, and

a set Σ2 of binary predicate symbols. �

In general, a signature of predicate logic language may also contain N -ary (N=3,

4, . . .) predicate symbols and function symbols. But, we will not use them in this

paper.

Given a UML class diagram D, we define the signature derived from D, written

Sig(D), through the following set of three signature rules SR0, SR1, and SR2. They

derive constant, unary predicate and binary predicate symbols from a class diagram,

respectively. In the following discussion, we assume that a UML class diagram D is

an Mi+1 model, i.e. the metamodel of some Mi models, where i >0.

An enumeration class in D defines a data type whose values are the enumer-

ation literals. We use a constant symbol to represent an enumeration value. Let

D.EnumValue denote the set of enumeration values in D. Hence, we have the follow-

ing signature rule.

Rule SR0. (Constants)

For each enumeration value V given in an enumeration class E in D, we include

a constant symbol V in Σ0. Formally, Σ0=SR0(D) = {V |V ∈ D.EnumValue). �

For example, Fig. 4 shows examples of models at different layers in the metamodel

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 171

hierarchy, where A0 partly depicts a snapshot of a run-time program, A1 is a user-

defined UML model, A2 is a subset of UML metamodel, and A3 is a subset of the

MOF model. The enumeration class AggregationKind in A3 defines a data type

for the attribute aggregation of class MetaProperty. By applying SR0 on A3, we

obtain constant symbols none, shared and composite from the enumeration values of

AggregationKind.

Figure 4. Examples of models in the metamodel hierarchy

A class in model D is a classification of elements in an instance of D. Let D.Class

denote the set of classes in D. Thus, we have the following signature mapping.

Rule SR1. (Unary predicate symbols)

For each class named C in D, we include a unary predicate symbol C in Σ1 ⊆Sig(D).

Formally, Σ1=SR1(D) = {C|C ∈ D.Class}. �

Informally, for an element x in an Mi model M , C(x) means that element x has

type C. For example, given class diagrams in Fig. 4, by applying rule SR1 to A1, we

obtain a unary predicate symbol Person(x). The formula Person(Alice) means that

the element Alice in A0 is of type Person. By applying SR1 on A2, we derive two unary

predicates symbols Class(x) and Property(x). Formula Class(Person) means that the

element Person in A1 is a class ; and Property(name) means that name is a property.

By applying SR1 on A3, we derive unary predicate MetaClass(x), MetaAssociation(x),

MetaProperty(x) and AggregationKind(x). Then formulas MetaClass(Class), Meta-

Class(Property), MetaAssociation(l1), MetaAssociation(l2), MetaProperty(type) and

172 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

MetaProperty(ownedAttribute) assert the types of elements in model A2.

In class diagram D, an association between classes X and Y with label A on the

association end at Y ’s side defines a relationship A that instances of X and instances

of Y may hold in an instance model of D. An attribute A of X with Y as the data type

also defines such a relationship. Let D.Property and D.AssociationEnd denote the

set of properties and association ends in D, respectively. We use a binary predicate

to represent a relationship, hence the following signature rule.

Rule SR2 (Binary predicates).

For each attribute R of class X with class Y as the data type, and each as-

sociation from class X to class Y with R as the association end in D, we include a

binary predicate symbol R in Σ2. Formally, Σ2= SR2(D) = {R|R ∈ D.Property ∨R ∈

D.AssociationEnd}. �

Informally, for a pair of elements (x, y), R(x, y) means that there is a R re-

lationship between x and y. For example, by applying SR2 on A1 in Fig. 2, we

obtain a binary predicate symbol name(x,y). The formula name(p, Alice) means

that the value of the attribute name of p in A0 is Alice. By applying SR2 on A2, we

obtain binary predicate symbols ownedAttribute(x,y) and type(x,y). The attribute

definition ‘name: string ’ in A1 can be described as ownedAttribute(Person, name)

and type(name, string). By applying SR2 on A3, we obtain binary predicate symbols

aggregation(x,y), metaType(x,y) and metaMemberEnd(x,y). The statements about

the attribute aggregation of the association ends of association l1 in A1 can be stated

as aggregation(ea1, composite) and aggregation(ownedAttribute, none).

Definition 2. (Signature induced from metamodel)

Let D be a UML class diagram. We define Σ=Σ0∪Σ1∪Σ2 =Sig(D) = SR0(D)∪

SR1(D)∪ SR2(D) to be the signature induced from D, where Σi= SRi(D), i= 0, 1,

2. �

3.2 Subject domain

We use mathematical structures to represent systems in subject domains at all

layers of the UML metamodel hierarchy. Given a signature Σ, we call such mathe-

matical structures Σ-algebras.

Definition 3. (S-Algebra)

Let Σ = Σ0 ∪ Σ1 ∪ Σ2 be any given signature. A Σ-algebra A =(A, Pr, Rel) is

a mathematical structure where A is a non-empty set, called the carrier set, Pr is a

set of unary predicates on A, and Rel is a set of binary predicates on A, such that,

− for each constant symbol c ∈ Σ0, there is a corresponding element cA ∈ A;

− for each unary predicate symbol P ∈ Σ1 here is a corresponding unary predicate

PA ∈Pr ;

− for each binary predicate symbol R ∈ Σ2 here is a corresponding binary pred-

icate RA ∈Rel. �

Given a signature Σ, to represent a system S as a Σ-algebra AS , we first consider

each unary predicate symbol P in Σ as representing a type of elements. We identify

the elements in the system S that are regarded as of type P . The set of such elements

identified for all unary predicates in Σ forms the carrier set A of the algebra AS . The

unary predicate PA in AS corresponding to symbol P is defined such that PA (a) is

true for an element a ∈ A if and only if the element a is of type P . Each binary

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 173

predicate symbol R in Σ is regarded as representing a relation on the elements in the

system. The corresponding relation RA in AS is defined such that RA (a, b) is true

for elements a, b ∈ A if and only if the relation holds between these two elements in

the system S. In the case that the carrier set A is the empty set ∅, the algebra AS

is trivial. This indicates that the system cannot be meaningfully represented as a

Σ-algebra.

Example 1. (Program as algebra)

Let signature Σ be Σ0 ∪ Σ1 ∪ Σ2, where Σ0 = ∅, Σ1 = {Class, Attribute}, and

Σ2={Inherits, HasAttribute}. Consider the Java program skeleton given in Fig. 1(b).

We can represent it as the following algebra, which is referred to as Alg1 in the sequel.

A={Person, Woman, Name}

Class(Person)=true, Class(Woman)=true, Class(Name)=false;

Attribute(Person)=false, Attribute(Woman)=false, Attribute(Name)=true;

Inherits(Woman, Person)=true; HasAttribute(Woman, Person)=false;

Inherits(Woman, Name)=false; HasAttribute(Woman, Name)=true;

Inherits(Woman, Woman)=false; HasAttribute(Woman, Woman)=false;

Inherits(Person, Woman)=false; HasAttribute(Person, Woman)=false;

Inherits(Person, Name)=false; HasAttribute(Person, Name)=true;

Inherits(Person, Person)=false; HasAttribute(Person, Person)=false;

Inherits(Name, Person)=false; HasAttribute(Name, Person)=false;

Inherits(Name, Woman)=false; HasAttribute(Name, Woman)=false;

Inherits(Name, Name)=false; HasAttribute(Name, Name)=false.

The mathematical structure Alg1 satisfies the statements Class(Person),

Class(Woman) and Inherits(Woman, Person) in the descriptive semantics of the

model CD1. �

Extracting algebraic structural information from program source code has been

implemented by various reverse engineering tools such as those used to recover design

patterns in software[8].

Similarly, information contained in graphic models can also be represented as

algebras following the same procedure described above for extracting algebraic struc-

tural information from software systems.

Example 2. (Model as algebra)

Let signature Σ’ be Σ’0Σ’1Σ’2, where Σ’0 = ∅, Σ’1 ={MetaClass, MetaRelation},

Σ’2 = ∅. Here, we interpret the unary predicate symbol MetaClass as the type of

the element types in the model, and the unary predicate symbol MetaRelation as the

type of the relations between the elements in the model. Therefore, the ‘elements’ x

in CD1 such that MetaClass(x) is true are Class, and Attribute. The ‘elements’ x in

CD1 such that MetaRelation(x) is true are Inherits and HasAttribute. The carrier

set is, therefore, {Class, Attribute, Inherits, HasAttribute}. The class diagram CD 1

given in Fig. 1(a) can thus be represented as the following algebra, which is referred

to as Alg2.

A = {Class, Attribute, Inherits, HasAttribute}.

174 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

MetaClass(Class)=true, MetaRelation(Class)=false,

MetaClass(Attribute)=true, MetaRelation(Attribute)=false,

MetaClass(Inherits)=false, MetaRelation(Inherits)=true,

MetaClass(HasAttribute)=false; MetaRelation(HasAttribute)=true;

The mathematical structure Alg2 can be used to evaluate the truth of descriptive

statements at metamodel level, such as MetaClass(Class) ∧MetaClass(Attribute). �

It is worth noting that the representation of a model or system as an algebra

depends on the signature and the semantics interpretation of the symbols in the

signature. One system or model can be represented differently when the signature is

different or the interpretation of the symbols is different. For example, consider the

class diagram CD1 depicted in Fig. 1. Given the signature is Σ in Example 1, we

can interpret the unary predicate symbol Class as the class nodes in a class diagram,

the unary predicate symbol Attribute as the items in the attribute compartments of

class nodes, etc. Consequently, the model CD1 can be represented exactly the same

as the algebra Alg1. Being able to represent both the class diagram CD1 and the

Java program skeleton given in Fig. 1 as the same algebra Alg1reflects the fact that

the Java program is an instance of the model CD1 in the context of the signature Σ.

Definition 4. (Subject domain)

Let class diagram D be an Mi model and Σ=Sig(D) the signature induced from

D. The collection of all Σ-algebras is called the immediate subject domain of model

D, denoted by Dom<i>(D). For i >1, the ultimate subject domain of an Mi model

D, denoted by Dom* (D) is inductively defined as follows.

For i=1, Dom* (D)=Dom<1>(D).

For i > 1, Dom* (D)=
⋃

{Dom* (Dx)|Dx ∈ Dom<i>(D)} �

For example, let U denote the metamodel of the UML language and N the set

of all UML models. U is an M2 model. As illustrated by Example 1, any UML

model can be represented as a mathematical structure in the signature induced from

U . Therefore, the immediate subject domain of the model U is the set of all UML

models, i.e. Dom<2>(U) = N . For an M1 model Ux ∈N , its immediate subject

domain Dom<1>(Ux) is the collection of all mathematical structures in the signature

induced from Ux, including the OO programs whose static structures are captured

by Ux. Therefore, the ultimate subject domain of UML contains all OO programs

written in Java or any object-oriented programming languages, i.e.

SubDom(U) =
⋃

{

SubDom(Ux)
∣

∣Ux ∈ SubDom<2>(U)
}

=
⋃

{SubDom(Ux) |Ux ∈ N}

In general, for an M2 model D which defines a modelling language L, its im-

mediate subject domain contains all models in L, and its ultimate subject domain

contains all mathematical structures in the signatures induced from models in L.For

the only M3 model MOF, since any M2 model is an instance of MOF and can be

represented as a mathematical structure induced from MOF, its immediate subject

domain is the set of all M2 models. The ultimate subject domain of MOF contains

the subject domains of all M2 model.

3.3 Instance-of relation

Informally, a system S is an instance of a model M , if (a) S is in the subject

domain of the model, i.e. the system S can be represented as a mathematical structure

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 175

in the signature induced from M ; and, (b) S satisfies the statements of M . The

following defines the syntax of the formulas representing statements of models.

Definition 5. (Formulas)

Given a signature Σ = Σ0∪Σ1∪Σ2, and a collection V = V 0∪V 1∪V 2 of disjoint

and countable sets of variables, the predicate logic formulas are inductively defined

as follows.

− For all unary predicate symbols P ∈ Σ1, constant symbols c ∈ Σ0, and variables

x ∈ V 0, P (c) and P (x) are formulas;

− For all binary predicate symbols R ∈ Σ2, constant symbols c1, c2 ∈ Σ0, and

variables x1, x2 ∈ V 0, R(c1, c2), R(x1, c2), R(c1, x2) and R(x1, x2) are formulas;

− For all variables X ∈ V 1, constant symbols c ∈ Σ0, and variables x ∈ V 0, X(c)

and X(x) are formulas;

− For all variables X ∈ V 2, constant symbols c1, c2 ∈ Σ0, and variables x1,

x2 ∈ V 0, X(c1, c2), X(x1, c2), X(c1, x2) and X(x1, x2) are formulas;

− F1 ∧ F2, F1 ∨ F2, F1 ⇒ F2, F1 ⇔ F2, ¬F1 are formulas, if F1 and F2 are

formulas;

− ∀x. F and ∃x.F are formulas, if x ∈ V and F is a formula.

In the sequel, we write Formula(Σ, V) to denote the set of formulas in signature

Σ with variables in V . �

Let A be a Σ-algebra, an assignment α of variables V to Σ-algebra A is a

mapping from V to A such that

(a) for each x ∈ V 0, α(x) ∈ A;

(b) for each x ∈ V 1, α(x) ∈Pr ; and

(c) for each x ∈ V 2, α(x) ∈Rel.

Given a Σ-algebra A , a formula φ, and an assignment α of variables in φ, we

define EvaA ,α(φ) as follows.

− EvaA ,α(P (c))=True, if and only if PA (cA) is true in A ;

− EvaA ,α(P (x))=True, if and only if PA (α(x)) is true in A ;

− EvaA ,α(R(c1, c2))=True, if and only if RA (c1A ,c2A) is true in A ;

− EvaA ,α(R(x1, c2))=True, if and only if RA (α(x1), c2A) is true in A ;

− EvaA ,α(R(c1, x2))=True, if and only if RA (c2A , α(x2)) is true in A ;

− EvaA ,α(R(x1, x2))=True, if and only if RA (α(x1), α(x2)) is true in A ;

− EvaA ,α(X(c))=True, if and only if Pα(cA) is true in A , where Pα=α(X);

− EvaA ,α(X(x))=True, if and only if Pα(α(x)) is true in A , where Pα=α(X);

− EvaA ,α(X(c1, c2))=True, if and only if Rα(c1A ,c2A) is true in A , where

Rα=α(X);

− EvaA ,α(X(x1, c2))=True, if and only if Rα(α(x1), c2A) is true in A , where

Rα=α(X);

− EvaA ,α(X(c1, x2))=True, if and only if Rα(c2A , α(x2)) is true in A , where

Rα=α(X);

− EvaA ,α(X(x1, x2))=True, if and only if Rα(α(x1), α(x2)) is true in A , where

Rα=α(X);

− EvaA ,α(F1∧F2)=True, if and only if EvaA ,α(F1)=True andEvaA ,α(F2)=True;

− EvaA ,α(F1∨F2)=True, if and only if EvaA ,α(F1)=True orEvaA ,α(F2)=True;

− EvaA ,α(F1 ⇒ F2)=True, if and only if EvaA ,α(F1)=False or EvaA ,α(F2)=True;

− EvaA ,α(F1 ⇔ F2)=True, if and only if EvaA ,α(F1)=EvaA ,α(F2);

176 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

− EvaA ,α(¬F)=True, if and only if EvaA ,α(F)=False;

− EvaA ,α(∀x.F)=True, if and only if EvaA ,,α′ (F)=True for all assignment α’

such that α’(z)=α(z) for all z 6= x;

− EvaA ,α(∃x.F)=True, if and only if EvaA ,,α′ (F)=True for at least one as-

signment α’ such that α’(z)=α(z) for all z 6= x.

Definition 6. (Satisfaction relation)

Let Σ be any given signature, A be a Σ-algebra and F be a formula in signature

Σ. We say that A satisfies F , written A |= F , if there is an assignment α in A such

that EvaA ,α(F)=True.

Let Φ be a set of formulas in signature Σ. We say that A satisfies Φ, write A |=Φ,

if there is an assignment α in A such that for all F ∈Φ, we have that EvaA , α(F) =

True. �

For example, by the above definition of |=, it is easy to see that the following

statement is true in the algebra given in Example 2.

∀x.HasAttribute(Person,x) → HasAttribute(Woman,x).

Note that the above definition applies to models at all layers in the metamodel

hierarchy.

By representing systems and models at all layers of metamodel hierarchy as

mathematical structures and defining the semantics of models/metamodels as a set of

statements, the instance-of relation between a structure and a model can be defined

by employing the satisfaction relation.

Definition 7. (Instance-of relation)

Let M be a system/model at Mi level, and N be an Mi+1 model, for i > 0. Let

RepΣ(M) denote the representation of M as a mathematical structure in the signature

Σ and SemanticsΣ(N) be the set of statements in the signature Σ that defines the

semantics of N . We say that M is an instance of N , if

(a) RepΣ(M) is a non-trivial Σ-algebra, where Σ=Sig(N); and

(b) RepΣ(M) |= SemanticsΣ(N).

For the sake of convenience, in the sequel we will also write M |=ΣΦ to denote

that the algebraic representation of model M in signature Σ satisfies the Σ statements

in Φ. When there is no risk of confusion, we also omit the subscript Σ. �

In the following two sections, we will define the functional and descriptive se-

mantics for UML models and metamodels at all layers.

4 Descriptive Semantics

In this section, we present a set of rules to derive a set of formulas from a class

diagram to represent the descriptive semantics of the model. We will demonstrate

that the rules are applicable to class diagrams used at all layers of the UML meta-

model hierarchy. We will then identify the characteristics of using class diagrams in

metamodelling and specify the usage context as a set of rules that derive additional

descriptive statements from models.

4.1 Translation mapping

Given an Mi+1 model N , and an Mi model D, the following set of translation

mapping rules translate D into a set of formulas in the signature Σ determined by N .

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 177

At the same time, the rules check if D is a Σ-algebra.

Rule TR1. (Classification of elements)

For each element a of type C in model D, a formula C(a) is generated, if C is a

concrete class in N . If D contains an element whose type is not a concrete class in N ,

D is not an instance of N . �

We write RN (M) to denote the set of statement generated from Mi model M

based on Mi+1 model N by applying rule R. The subscript N may be omitted when

there is no risk of confusion.

For example, by applying rule TR1 to the M2 model A2 in Fig. 4 based on the

M3 model A3, the following formulas are derived, stating that Class and Property are

instances of MetaClass, l1 and l2 are instances of MetaAssociation, ownedAttribute

and type are instances of MetaProperty.

TR1A3(A2) = {MetaClass(Class), MetaClass(Property),

MetaAssociation(l1), MetaAssociation(l2),

MetaProperty(ownedAttribute), MetaProperty(type) }

By applying rule TR1 to the M1 model A1 in Fig. 4 and the UML metamodel,

the following formulas can be derived, stating that Person is an instance of Class and

Name is an instance of Property.

TR1A2(A1)={Class(Person), Property(Name)}

Elements in a model bear certain relationship, which are mostly expressed through

their relative position. In a class diagram, for instance, an attribute definition inside

a class node indicates that the class owns this attribute. Such implicitly specified

relationships in a model should be explicitly expressed in the descriptive semantics of

the model. Hence we have the following mapping rule.

Rule TR2. (Relationships between elements)

For a pair (e1, e2) of elements in a model M which has relationship R, a formula

in the form of R(e1, e2) is generated, if R is a meta-relation (i.e. either a meta-

attribute or a meta-association in the metamodel N . If R is not a meta-relation in

the metamodel N , the model is not an instance of the metamodel N . �

For example, by applying rule TR2 to A2 in Fig. 4 and the M2 model A3 as the

metamodel, the following formulas can be derived.

TR2A3(A2)={metaMemberEnd(l1, ownedAttribute), metaMemberEnd(l2, type),

metaType(ownedAttribute, Property), metaType(type, Class)}

By applying rule TR2 to A1 in Fig. 2 using the UML metamodel as the meta-

model, the following formulas can be derived.

TR2A2(A1)={ownedAttribute(Person, Name), type(Name, String)}

Note that the translation rules play two roles. First, it derives a set of formulas

as a part of the descriptive semantics of the model. Second, it checks if a model is in

the structure required by its metamodel. If the formulas are successfully generated,

then it is a Σ-algebra. Thus, it satisfies the descriptive semantics of its metamodel.

It is also interesting to observe that an M3 model can be used as its own meta-

model when applying the translation rules. For example by applying rule TR2 to A3

in Fig.4 using A3 itself as the metamodel, the following formulas are derived.

178 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

TR2A3(A3) = { meta-metaOwnedAttribute(MetaProperty, aggregation),

meta-metaType(aggregation, AggregationKind),

meta-metaMemberEnd(k1, metaOwnedAttribute),

meta-metaType(metaOwnedAttribute, MetaProperty),

meta-metaMemberEnd(k2, metaType),

meta-metaType(metaType, MetaClass),

meta-metaMemberEnd(k3, metaMemberEnd),

meta-metaType(metaMemberEnd, MetaProperty)}.

where, to avoid naming confliction and confusion, a prefix ‘meta-’ is added to each

symbol of A3 when it is used as the metamodel. This reveals the reflection of the M3

model, which “extends a model with the ability to be self describing”[3].

In the sequel, we write TRN (M) to denote the set of statements generated from

Mi model M based on Mi+1 model N by applying rule TR1 and TR2. We also

often omit the subscript N when there is no risk of confusion. That is,

TRN (M) = TR1N (M)∪TR2N (M).

It is easy to see that the translation mapping is complete in the sense that every

element and relationship in an Mi model is represented in the generated formulas. The

following theorem proves that the above rules are correct as the descriptive semantics

of class diagrams.

Theorem 1. (Correctness of the descriptive semantics mappings)

Let N be an Mi+1 model and M be an Mi model. If model M is a valid instance

of N , then the following two statements are true.

(a) The formulas generated are syntactically valid. Formally,

TRN (M) ⊆ Formula(Sig(N), ∅).

(b) The model M ’s structure is reflected in the generated formulas. Formally,

M |= TRN (M).

Proof: (a) We prove statement (a) via contradiction.

Assume there is a formula φ such that φ∈TRN (M)s, but φ /∈Formula(Sig(N),∅).

If φ is generated by applying rule TR1, then, according to the definition of TR1, there

is an element a in model M of type C such that φ=C(α). Since, φ /∈Formula(Sig(N),∅),

we have that C is not a class in metamodel N , according to SR1. Therefore, there is a

model element in M that does not belong to a class in the metamodel. Thus, M is not

a valid instance of N . This contradicts the condition of the theorem. Similarly, if φ is

generated by applying rule TR2, we have that there are elements a1 and a2 in model

M that are related by a relation R and φ=R(a1, a2). Because φ/∈Formula(Sig(N),∅),

according to the signature mapping rule SR2, R is not an attribute or association in

the metamodel N . Therefore, elements a1 and a2 in model M cannot be related in a

valid instance model of N . This contradicts the condition of the theorem. In conclu-

sion, the assumption that φ /∈Formula(Sig(N),∅) is not true. Thus, the statement

(a) holds.

(b) Now, we prove statement (b).

Let φ∈TRN (M). If φ is generated by applying rule TR1, according to the defini-

tion of TR1, there is an element a in model M of type C such that φ=C(α). Because

C(α)∈Formula(Sig(N)) according to statement (a) proved above, C is a unary pred-

icate symbol in the signature of the algebraic representation of model M . Therefore,

in the algebraic representation of M , we have C(α)=true. Thus, M |=φ. If φ is

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 179

generated by applying rule TR2, we have that there are elements a1 and a2 in model

M that are related by a relation R and φ=R(a1, a2). Similarly, we have that in the

algebraic representation of M , we have the R(a1, a2)=true. Therefore, we also have

that M |=φ. Thus, statement (b) is also true. �

Note that, the set of formulas derived from a class diagram using the translation

rules allow flexibility in the interpretation of the diagrams differently according to the

usage of the model. In the following subsection, we identify the usage context of class

diagrams in metamodeling and specify the context in the form of a set of rules.

4.2 Hypothesis mapping

The interpretation of a UML model depends on the context in which the model is

used. For example, a UML model may play the role of a sketch design of a program,

which means each element in the model is supposed to have a corresponding element

of the same type in the program, but the program may be allowed to have elements

that are not depicted in the diagram. A model may also be used as a detailed design,

which requires it to depict all classes in the program as well as all attributes and

operations of the classes. Such assumptions on the relationship between a model and

the modelled structures are not explicitly specified in the model, but are necessary

when interpreting the model, therefore need to be formalised in descriptive semantics.

Our approach is to allow the users to specify a set of hypothesis about the uses of

the model in the form of logic formulas. In this section, we discuss the context of

using class diagrams in metamodelling and define a set of hypothesis mappings that

characterises the context.

Let e1, e2, . . . , ek be the set of elements in an Mi model M , and C be their direct

types.

Rule HR1. (Distinguishability of elements)

Elements of type C are all different. Thus, we have the following set of formulas:

{ei 6= ej | for i 6= j ∈{1, 2, . . . k}}. �

For example, the class diagram B2 in Fig. 5 is a metamodel, and we expect that

Association is different from Generalisation and Class, etc. By applying rule HR1 to

class nodes in B2, we obtain the following set of formulas.

HR1(B2) = {Association 6= Class, Association 6= Generalisation, Association 6=

Classifier . . . }

When HR1 is applied to classes in B1, we obtain the following set of formulas.

HR1(B1) ={Person 6= Woman, Person 6= Man, Man 6= Woman}

These formulas are necessary when B1 is used as a model of the real world,

where woman, man and person are different concepts. However, if B1 is used as a

requirements specification of a software system, these formulas may be unnecessary,

because a program containing one class implementing Person with an attribute Sex,

whose value is Male or Female, is also be a correct implementation of B1. In this

case, the hypothesis rule HR1 is not applicable.

Rule HR2. (Completeness of elements)

The set of elements of a type C is complete. Formally,

∀x. (C(x) → (x = e1)∨ (x = e2)∨ . . .∨ (x = ek)). �

180 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

For example, by applying rule HR2 to classes in B2 in Fig. 5, we obtain the

following formula.

∀x. (MetaClass(x) → (x = Association) ∨ (x = Class)

∨(x = Generalisation) ∨ (x = Classifier))

Figure 5. Examples of models for applying axiom mapping rules

This means in the modelling language specified by B2, the metaclasses can only be

Association, Generalisation, Class and Classifier. Therefore, elements in the instances

of B2 can only be of type Association, Generalisation, Class or Classifier.

When HR2 rule is applied to B1, we obtain the following formula.

HR2(B1)={∀x.((Class(x) → (x = Person) ∨ (x = Man) ∨ (x = Woman)))}

This formula is not required if a program containing additional classes is regarded

as a correct implementation of B1. It is required when B1 is used as a model derived

from code in reverse engineering.

Similarly, we have the following hypothesis on the completeness of relations in

metamodels. Let R(x1, x2) be a binary predicate, R(e1,1, e1,2), R(e2,1, e2,2), . . . ,

R(en,1, en,2) be the set of R relations explicitly depicted in the metamodel.

Rule HR3. (Completeness of relations)

Relation R is completely depicted in metamodels. Formally, we have the following

formula:

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 181

∀x1, x2.(R(x1, x2) → ((x1 = e1,1) ∧ (x2 = e1,2))∨((x1 = e2,1)∧

(x2 = e2,2))∨. . . ((x1 = en,1)∧ (x2 = en,2))) �

This hypothesis states that all relations of a certain type are explicitly specified

in metamodels, thus any additional relation in an instance model will be regarded

as not satisfying the metamodel. For example, by applying HR3 to the relationship

specific in B2 in Fig. 5, the following formula can be obtained.

∀x, y. specific(x, y) → ((x=cc) ∧ (y=Class)) ∨ ((x=ac) ∧ (y= Association))

where cc is the identifier of the generalisation arrow from Class to Classifier, and ac

the identifier of the generalisation arrow from Association to Classifier.

Again, this rule is not always applicable to models at layer M1. If it is applied

to the relationship specific in B1 in Fig. 5, we obtain the following formula.

∀x, y. specific(x, y) → ((x=wp) ∧ (y=Person)) ∨ ((x=mp) ∧ (y=Person))

where wp is the identifier of the generalisation arrow from Woman to Person, and

mp the identifier of the generalisation arrow from Man to Person. This is not neces-

sarily true, because, for example, there may be additional classes in the system and

additional inheritance between them.

One of the most important hypothesis on the uses of class diagrams as metamodels

is the strict metamodelling principle. It was proposed by Atkinson[9,10] to ensure that

a metamodel is a well-defined abstract syntax of modelling language. The strict

metamodelling principle states that:

“In an n-level modelling architecture M 0, M1, . . . , Mn, every element of an M i-

level model must be an instance-of exactly one element of an M i+1-level model,

for all 0 6 i < n − 1.”

Therefore, we have the following hypothesis rule, which asserts that an element

is only in one concrete class.

Rule HR4. (Disjointness of classification)

Let C1, C2, . . . , Cn be the set of concrete classes in D. For each pair of different

concrete classes Ciand Cj , i 6= j, we include the formula ∀x. (Ci(x)→ ¬Cj(x)) in

Axm(D). �

For example, by applying rule HR4 on B2 in Fig. 5, the following statements

are derived, which state that instances of Class, Association and Generalisation are

disjoint with each other.

HR4(D2) = {∀x. (Class(x) → ¬ Association(x)),

∀x. (Association(x) → ¬ Generalisation(x)),

∀x. (Class (x) → ¬ Generalisation(x)) }

Rule HR4 is sometimes applicable to models at M1 level, but not always. For

example, by applying HR4 on B1, the following axioms on instances of B1 are derived,

which state that instances of Man and Woman are disjoint.

HR4(D1) = {∀x. (Woman(x) → ¬ Man(x))}

182 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

In this case, it is true. However, the rule is not always applicable, especially when

‘multiple inheritances ’ is allowed.

Note that the above rules are also based on a metamodel N to determine the

type an element belongs to. We have omitted this issue in the above discussion

for the sake of readability. In the sequel, we write HRN(M) to denote the set of

statements generated from a model M according to a metamodel N by applying the

above hypothesis rules.

To conclude this section, we now formally define the descriptive semantics of

metamodels at all layers as the set of statements generated by the translation rules

and hypothesis rules.

Definition 8. (Descriptive semantics)

Given an Mi model M as an instance of metamodel N at Mi+1 level, the descrip-

tive semantics of M , written JMKDes, is defined to be the set of formulas TRN (M)∪

HRN(M). �

5 Functional Semantics

As discussed in Section 2, the functional semantics of UML defines the properties

of the basic OO concepts underlying the language. In general, functional semantics

include both static and dynamic semantics, where the former are time invariant and/or

time independent features, while the latter are the temporal aspect of functionality

and behaviour. Since models are static, i.e. the set of statements that a model states

are invariant of time, the functional semantics of metamodels only involves static

functional semantics. Thus, in this paper we only give the static functional semantics

of metamodels.

We specify the OO concepts by a set of axioms in second order predicate logic.

The predicates used in the axioms, except for the additionally defined ones, are from

the signature induced from the UML metamodel. These axioms are applicable to all

models and systems at all levels.

The static functional semantics for OO systems consists of the following axioms.

5.1 Basic axioms

The first group of axioms are about the basic properties of classes and objects.

Axiom 1. (Classification of objects)

Every object must be an instance of a class. Formally,

∀x .(Object(x) → ∃C.(Class(C) ∧ C(x))).

�

Axiom 2. (Attribute declarations)

Every attribute declared in a class is a property of the class. Let HasAttribute

be a binary predicate. Formally, we have that

∀x .∀C. (Class(C) ∧ Property(x) ∧ OwnedAttribute(C,x) → HasAttribute(C,x))

�

Axiom 3. (Operations declarations)

Every operation declared in a class is an operation of the class. Formally,

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 183

∀x .∀C .(Class(C)∧Operation(x)∧ OwnedOperation(C,x) → HasOperation(C,x))

�

The following axiom is about the composition relation.

Axiom 4. (Composite relation)

Assume that there is a composite relation from class A to class B (i.e. B is a

part of A). For each object x in class B, there is an object y in class A such that x

is a part of y.

∀A.∀B.((Class(A)∧ Class(B)∧ Association(C)∧

memberEnd(C, b)∧ type(b, B)∧ aggregation(b, composite))

→ ∀x. (B(x) → ∃!y.(A(y) ∧ b(x,y)))

�

The following axioms are about enumeration classes.

Axiom 5. (Distinguishability of the literal constants)

The different literals in an enumeration class are different values.

∀A.(Enumeration(A)∧ ownedLiteral(A, v1) ∧ ownedLiteral(A, v2) → (v1 6= v2))

�

Axiom 6. (Completeness of the enumeration)

An enumeration class only has it literals as instances.

∀A.(EnumClass(A) → (∀x.(A(x) → ownedLiteral(A, x)))

�

5.2 Axioms on inheritance

The following axioms define the notion of inheritance.

Axiom 7. (Inheritance)

If class A inherits class B, every instance of A is also an instance of B.

∀A. ∀B. (Class(A) ∧Class(B ∧Inherits(A,B) → ∀x (A(x) → B(x)))

�

Axiom 8. (Inherited attributes)

If class A inherits class B, every attribute of B is also an attribute of A.

∀A. ∀B.(Class(A)∧ Class(B)∧ Inherits(A,B)

→ ∀x.(Property(x)∧ HasAttribute(B,x) →HasAttribute(A,x)))

�

Axiom 9. (Inherited operations)

If class A inherits class B, every operation of B is also an operation of A

∀A.∀B.(Class(A)∧ Class(B)∧ Inherits(A,B)

→ ∀x.(Operation(x)∧ HasOperation(B,x) →HasOperation(A, x)))

184 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

�

Axiom 10. (Abstract class)

If class A is abstract, for every object x, if x is an instance of class A, then, there

must be a subclass B of A such that x is an instance of B.

∀A.(Class(A)∧IsAbstract(A) → ∀x.(A(x) → ∃B.(Class(B)∧Inherits(B, A) ∧ B(x)))

�

5.3 Axioms on type constraints

When classes are regarded as types, type consistency and type checking rules can

be defined. This is reflected in the following axioms.

Axiom 11. (Attribute type)

If an attribute a of class A is of type class B, then, for all instance x of class A,

the value of x on attribute a must be an instance of class B.

∀A, B, a.(Class(A)∧HasAttribute(A, a)∧ CurrentType(a, A, B)

→ (∀x, y. (a(x, y) ∧A(x) → B(y))))

�
Axiom 12. (Association type constraint)

Let a be an association between classes A and B. For all objects x of class A, the

objects y that x associates to through a must be in class B. Similarly, for all objects

y of class B, the objects x that y associates to through a must be in class A.

∀A.∀B.(Class(A)∧ Class(B)∧ Association(a)∧ memberEnd(a, Ea) ∧

CurrentType(Ea, A) ∧memberEnd(a, Eb) ∧ CurrentType(Eb,B)

→ (∀x, y.Eb(x, y) ∧ A(x) → B(y)) ∧ (∀x, y. Ea(y, x) ∧ B(y) → A(x)))

�

The following axioms are about the redefinition of attributes and operations. Let

CurrentType(x, y, z) be a 3-ary predicate to represent that attribute x of class y is

of type z.

Axiom 13. (Redefined attributes)

If class A inherits class B and A declares an attribute a with type TA, then the

type of attribute a is TA regardless what is defined in class B.

∀A, B.(Class(A)∧ Class(B)∧ Inherits(A, B)∧ OwnedAttribute(A, a)∧ Type(a, TA)

→CurrentType(a, A, TA))

�
Axiom 14. (Unredefined attributes)

If class A inherits attribute a from B without redefining a, then the type of

attribute a is as in B.

∀A.∀B.(Class(A)∧ Class(B)∧ Inherits(A, B)∧

CurrentType(a, B, TB) ∧ ¬OwnedAttribute(A, a) →CurrentType(a, A, TB))

�
Axiom 15. (Type of the literal constants)

The type of a literal value is the enumeration class in which the literal is declared.

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 185

∀A.(EnumClass(A) ∧ ownedLiteral(A, v) → A(v))

�

5.4 Axioms on multiplicity

The following axioms are about multiplicity.

Axiom 16. (Multiplicity of association)

Let a be an association between classes A and B. If the lower and upper limits

of the multiplicity of a on class B’s end are n and m, respectively, then for all objects

x of class A, the number of objects associated to x through association a must be

between n and m.

∀A.∀B.(Class(A)∧ Class(B)∧ Association(a)∧

memberEnd(a, Ea) ∧ type(Ea,A)∧ memberEnd(a, Eb) ∧ type(Eb,B)∧

upperValue(Eb, m)∧ lowerValue(Eb, n)

→ (∀x.A(x) → n 6 ||{y| Eb(x, y)}||6 m))

�

Axiom 17. (Multiplicity of attributes)

Let a be an attribute of class A. If the multiplicity of attribute a has n and m

as its lower and upper limits, then, for all objects x of class A, the number of objects

as the value of x’s attribute a must be between n and m.

∀A.(Class(A)∧ ownedAttribute(A, a)∧ upperValue(a, m)∧ lowerValue(a, n)

→ (∀x.A(x) → n 6 ||{y| a(x, y) }||6 m))

�

Definition 9. (functional semantics of class diagrams)

Let M be any given class diagram in UML, the functional semantics of M consists

of the axioms given above. We write JMKFun to denote the functional semantics of

M . �

The above axioms hold for models at all layers of the metamodel hierarchy. This

is the foundation for unifying the semantics of models and metamodels. The next

section discusses how functional semantics can be integrated with the translation and

hypothesis rules to further enhance the semantics for metamodels.

6 Integration of Functional and Descriptive Semantics

In this section, we discuss how functional semantics and descriptive semantics

can be integrated into one logic system so that the semantics of metamodels can be

formalized. We will first illustrate the way that two semantics are integrated then

present a set of rules to derive formulas directly from class diagrams.

6.1 Integrating two semantics

Let’s start with an example at model level. Consider the class diagram CD 1

depicted in Fig. 1. By applying the translation rules TR1 and TR2, we derive the

following set of statements when the metamodel is B1.

Class(Woman), (1)

186 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Class(Person), (2)

Generalisation(wp), specific(wp,Woman), general(wp,Person). (3)

These statements are descriptive and assert that class Woman inherits class

Person. Formally,

Inherits(Woman,Person). (4)

where the predicate Inherits is not derived from the metamodel using the signature

mapping, but it is defined as follows using the predicates derivable from the meta-

model.

Inherits(A, B) = ∃x(Generalisation(x) ∧ specific(x, A) ∧ general(x, B). (5)

On the other hand, we have the following axiom (Axiom 7) in the functional

semantics of object orientation.

∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A, B) → ∀x(A(x) → B(x))) (6)

Using formulas (1), (2) and (4), we derive the following statement from (6).

∀x(Woman(x) → Person(x)). (7)

This statement is a property that objects of the system at run time must satisfy.

It has been investigated in the research on semantics of UML, e.g. Refs. [10, 11].

Now, let’s consider the metamodel of class diagram CD2 depicted in Fig. 3.

Applying the translation rules to this diagram, the following formulas can be obtained.

MetaClass(Class), (8)

MetaClass(Classifier), (9)

MetaGeneralisation(cc), specific(cc,Class), general(cc,Classifier). (10)

where MetaClass is Class at meta-level and MetaGeneralisation is Generalisation at

meta-level. They are introduced to avoid confusion. Thus, from (9) and the definition

of Inherits in (5), we have that

Inherits(Class,Classifier). (11)

This is again a descriptive statement about the metamodel CD 2. Since the

axioms of functional semantics also apply to metamodel, we can derive the following

statement from (8)∼(11):

∀x.(Class(x) → Classifier(x)). (12)

This is a statement that all models (i.e. the instances of metamodel CD 2) must

satisfy.

From the above examples, we make two important observations.

First, the axioms of functional semantics are high order formulas, which contain

variables that range over predicates; while formulas (7) and (12) are first order.

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 187

Second, and more importantly, formulas obtained by applying translation rules

like (8) ∼ (10) and formulas derived by applying the axioms are in different signa-

tures. The predicate symbols derived from the meta-metamodel (e.g. MetaClass and

MetaGeneralisation) are eliminated by the combining the functional and descriptive

formulas. For example, formula (12) is in the same signature as formulas (1)∼(3),

rather than the signature of (8)∼(10).

In general, for a model M at level i, the descriptive statements are in the signature

derived from its metamodel N at level i+1. By combining them with the axioms of

functional semantics, which contains predicate symbols derived from N and M , will

generate statements in the signature derived from M , which is one level lower than

N .

Consequently, by replacing functional axioms with formulas like (7) or (12),

checking a system is an instance of a model can be done without looking at the

metamodel. Similarly, checking if a model is an instance of a metamodel does not

need to look at the meta-metamodel, etc. In other words, the instance-of relation is

defined only involving two adjacent levels.

The following subsection demonstrates that formulas like (7) or (12) can be de-

rived systematically without using a logic inference engine, but just a few transfor-

mation rules on the models.

6.2 Axiom mapping

We now define a set of rules to derive formulas in first order logic from a class

diagram. These rules are based on the functional semantics thus the formulas are the

axioms to be satisfied by all its instances. Thus, the rules are called axiom mappings.

A. Classification of elements

There are two kinds of classes in a class diagram: concrete classes and abstract

classes. Every element in an instance of a class diagram D must be an instance of at

least one concrete class in D. Note that an M1 model may depict only a subset of

the classes in the modelled systems. Therefore the following axiom rule is applicable

for an M1 model under the hypothesis that all classes in the modelled system are

depicted in the model. For an M2 or M3 model, however, the following axiom rule is

always applicable because an M2 or M3 model must define all types of elements in its

instance models. We have the following axiom rule to explicitly state the constraint.

Rule AR1. (Completeness of classification)

Let {C1,C2, . . . , Cn} be the set of concrete classes in class diagram D. We

include in Axm(D) the formula.

∀x. (C1(x) ∨ C2(x) . . .∨Cn(x)). �

For example, by applying rule AR1 on B2 in Fig. 5, the following statement

as the functional semantics of B2 is derived, stating that the type of any element is

Generalisation, Class or Association.

AR1 (B2) = {∀x. (Generalisation(x)∨ Class(x)∨ Association(x)) }

By applying AR1 on B1 in Fig. 5, the following formula as the semantics of

model B1 is derived, which states that the type of any element is Woman or Man.

188 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

AR1 (B1) = {∀x. (Woman(x)∨ Man(x))}

An element in a model has one and only one type; otherwise the element is

incomprehensible. Therefore, if a model N is an instance of D, every element in N

must be an instance of at most one concrete class in D. Hence the following axiom

rule is defined.

B. Inheritance hierarchy

Inheritance hierarchy of classes represents taxonomy of concepts. “Each instance

of the specific classifier is also an indirect instance of the general classifier”[12]. This

relation can be expressed as logic implication between the predicates, thus we have

the following axiom rule.

Rule AR2. (Logical implication of inheritance)

For a generalisation from class A to class B in a class diagram D, we include in

Axm(D) the following formula.

∀x. (A(x) → B(x)) �

For example, by applying AR2 to B2 in Fig. 5, the following statements can be

derived, stating that if an element is an instance of Class or Association, it is also an

instance of Classifier.

AR2 (B2) = {∀x. (Class (x) →Classifier(x)), ∀x. (Association (x) →Classifier(x))}

By applying AR2 to B1 in Fig. 5, the following statements can be derived, stating

that if an element is an instance of Man or Woman, it is also an instance of Person.

AR2 (B1)={∀x.(Man(x) → Person(x)), ∀x. (Woman(x) →Person(x))}

A model must have its elements completely and uniquely classified by classes in

its metamodel. If model N is an instance of model D, an element in N as an instance

of an abstract class in D must be an instance of some concrete class in D. Hence the

following axiom rule is defined.

Rule AR3. (Completeness of specialisations)

Let A be an abstract class and C1, C2, . . . , Ck be the set of classes specialising A

in a class diagram D. We include formula ∀x. (A(x) → (C1(x)∨C2(x)∨ . . .∨ Ck(x)))

in Axm(D). �

For example, by applying AR3 to model B2 in Fig. 5, the following statement

can be derived, stating that if a model element is an instance of Classifier, its type

must be either Class or Association.

AR3(B2) = {∀x. (Classifier(x) → (Class(x)∨Association(x)))}

By applying AR3 to model B1 in Fig. 5, the following statement can be derived,

stating that if an element is an instance of Person, it must be an instance of either

Man or Woman.

AR3 (B1) = {∀x. Person (x) → Woman(x)∨Man(x) }

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 189

C. Type constraints

Binary predicates derived from associations and attributes in a model D define

possible relationships between two elements in an instance of D. An axiom implicitly

specified in D is such a relationship only exists between elements of certain types.

Thus, we have the following axiom rule.

Rule AR4. (Type constraints)

For each binary predicate A(x, y) derived from an association from metaclass

C1 to C2 in D, or from an attribute A of type C2 in a metaclass C1, we include the

following formula in Axm(D).

∀x, y. (A(x, y) ∧ C1(x) → C2(y)) �

For example, by applying AR4 to B2 in Fig. 5, the following statements are

derived. The first, for instance, states that in an instance of B2, the value of attribute

isAbstract of a classifier must be a boolean value.

AR4(B2) ={∀x, y. (isAbstract(x, y)∧Classifier (x) →bool(y)),

∀x, y. (specific(x, y)∧Generalisation (x) →Class (y)),

∀x, y. (general(x, y)∧Generalisation (x) →Class (y))}

By applying AR4 to B1 in Fig. 5, the following statement can be derived, stating

that in an instance of B1, the name of an object of Person must be a string.

AR4 (B1) ={∀x, y. (name(x, y)∧ Person(x) →string(y))}.

D. Multiplicity constraints

Association ends and attributes are constrained by multiplicity. They “constrains

the size of the collection [. . .] of instances at the other end”[12]. Thus, we have the

following rule.

Rule AR5. (Multiplicity of binary predicate)

For each binary predicate A(x, y) derived from an association from class C1 to

C2 in D, let Mul be the multiplicity value specified on the association end A, we

include formula below in Axm(D):

If Mul = 0..1: ∀x, y,z. (C1(x) ∧ A(x, y) ∧ A(x, z) → (y = z))

If Mul = 1..*: ∀x.(C1(x.) → ∃y. A(x, y))

If Mul = 2..*: ∀x.(C1(x) → ∃y,z. A(x, y) ∧ A(x, z)∧ (y6= z))

If Mul = 1 or unspecified:

∀x. (C1(x) → ∃y. A(x, y)), ∀x, y,z. (C1(x) ∧ A(x, y) ∧ A(x, z) → (y = z))

If Mul = 0..2:

∀x, y,z, u.(C1(x) ∧ A(x, y) ∧ A(x, z) ∧ A(x, u) → (y = z)∨ (y = u)∨ (u = z))

�

For example, by applying AR5 to B2 in Fig. 5, the following statements are

derived, stating that any generalization element in an instance of B2 must have a

single specific end and a single general end.

190 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

AR5 (B2) ={∀x.(Generalisation(x) → ∃y. specific(x, y)),

∀x, y, z. (Generalisation (x)∧ specific (x, y)∧ specific (x, z) → (y = z)),

∀x. (Generalisation(x) → ∃y. general(x, y)),

∀x, y,z. (Generalisation (x)∧ general (x, y)∧ general (x, z) → (y = z)) }

E. Properties of enumeration values

Each enumeration class in a model defines a data type, and the enumeration

values defined in the enumeration class are the domain of the data type. With signa-

ture mapping, we can map enumeration values into constants. The following axiom

rules explicitly state that the constants are instances of the enumeration class, are

distinguishable from one another, and define a complete domain of the data type.

Rule AR6 (Distinguishability of the literal constants):

For each pair of different literal values a and b of an enumeration type, we include

a formula a 6= b in Axm(D). �

Rule AR7 (Type of the literal constants):

For each enumeration value a defined in an enumeration class E, we include the

formula E(a) in Axm(D). �

Rule AR8 (Completeness of the enumeration):

An enumeration type only contains the listed literal constants as its values, hence

for each enumeration class E with literal values a1, a2, . . . , ak, we include the following

formula in Axm(D).

∀x. (E(x) → (x = a1)∨ (x = a2)∨. . .∨ (x = ak))

�

For example, by applying AR6 to A3 in Fig. 4, the following axioms on instances

of A3 are derived, stating that constants none, shared and composite are different

values.

AR6(A3) ={none 6= shared, none 6= composite, composite 6= shared}

By applying AR7 to A3, the following axioms on instances of A3 are derived,

stating that constants none, shared and composite have AggregationKind as their

type.

AR7(A3) ={AggregationKind(none),

AggregationKind(shared),

AggregationKind(composite)}

By applying AR8 to A3, the following axioms on instances of A3 are derived,

stating that constants none, shared and composite are the complete set of values of

type AggregationKind.

AR8(A3) ={∀x. AggregationKind (x) → (x = none) ∨ (x = shared) ∨ (x =

composite) }

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 191

The following theorem proves that the axiom mapping rules are correct with

respect to the functional axioms.

Theorem 2. (Correctness of Functional Semantics Mapping)

For all class diagrams D and its metamodel N, for all formulas φ in Axm(D), we

have that JDKDes ∪ JNKFun ` φ.

Proof: (sketch)

We prove the statement by proving that the formulas generated by each axiom

mapping can be derived from the axioms of functional semantics and the formulas in

the descriptive semantics. Let φ in Axm(D).

Case 1: When φ is generated by applying Rule AR1, we have that

φ = ∀x. (C1(x) ∨ C2(x) . . .∨Cn(x))

where, according to the condition of Rule AR1, {C1,C2, . . . Cn} is the set of concrete

classes in class diagramD. Thus, according to Rule TR1, we have that Class(C1),

Class(C2), . . . , Class(Cn) in JDKDes. By Axiom 1, we have that

∀x .(∃C.(Class(C) ∧ C(x))).

Let x be any given object. Assume that C is the class such that Class(C)∧ C(x)

holds. If C is a concrete class, C is one of C1, C2, . . . , Cn. Thus, the statement is

true. If C is an abstract class, by TR2, we have that IsAbstract(C, True) ∈ JDKDes.

Then, by Axiom 10, we have that there is C ′ in D such that Class(C ′), Inherits(C ′,C)

and C ′(x). If C ′ is a concrete class, then, the statement is true; otherwise, repeat the

above argument for a finite number of times, we can find a concrete class C ′′ such that

C ′′(x) is true. Since {C1,C2, . . . Cn} contains all concrete classes in class diagramD,

we can deduce that C ′′ ∈{C1,C2, . . . Cn}. Therefore, ∀x. (C1(x) ∨C2(x) . . .∨Cn(x))

is true. In other words, JDKDes ∪ JNKFun ` φ.

Case 2: When φ is generated by applying Rule AR2, we have that

φ = ∀x. (A(x) → B(x))

where, according to the condition of Rule AR2, we have that A and B are classes

and there is a generalisation from class A to class B in a class diagram D. Thus,

according to Rule TR1, we have that Class(A), Class(B), and Inherits(A, B) are

in JDKDes. Therefore, by Axiom 7, we deduce that ∀x. (A(x) → B(x)). That is,

JDKDes ∪ JNKFun ` φ.

Case 3: When φ is generated by applying Rule AR3, we have that

φ =∀x. (A(x) → (C1(x) ∨ C2(x)∨ . . .∨Ck(x))),

where, A is an abstract class and {C1, C2, . . . , Ck} is the set of classes specialising A

in a class diagram D. Therefore, we have that the following formulas are in JDKDes.

Class(A), IsAbstract(A, True), Class(C1), . . . , Class(Ck).

By Axiom 10, we have that, for all x such that A(x) is true, there is a class B

such that B is a subclass of A and B(x) is true. Since {C1, C2, . . . , Ck} contains all

subclasses of A, we have that B ∈{C1, C2, . . . , Ck}. In other words, (C1(x)∨ C2(x)∨

192 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

. . .∨Ck(x)) is true. Therefore, we can deduce that ∀x. (A(x) → (C1(x) ∨ C2(x)∨

. . .∨Ck(x))). That is, JDKDes ∪ JNKFun ` φ.

Case 4: When φ is generated by applying Rule AR4, we have that

φ =∀x, y. (A(x, y) ∧ C1(x) → C2(y))

where binary predicate A(x, y) either represents an association from metaclass C1 to

C2 in D, or represents an attribute A of type C2 in a metaclass C1. Here, we only

give the proof for the case when the predicate A represents an attribute in metaclass

C1. The other case is similar, hence omitted for the sake of space.

When the predicate A represents an attribute in metaclass C1 and attribute A’s

type is C2, according to TR1 and TR2, we have that formulas Class(C1), HasAt-

tribute(C1,A) are in JDKDes and formula CurrentType(A,C1,C2) can be deduced from

the definition of predicate CurrentType and formulas in JDKDes. By Axiom 11 below,

∀A.(Class(A)∧HasAttribute(A, a)∧ CurrentType(a, A, B)

→ (∀x, y.(a(x, y) ∧ A(x) → B(y)))),

we have that (∀x,y.(A(x, y) ∧ C1(x) → C2(y))). That is, JDKDes ∪ JNKFun ` φ.

Case 5: When φ is generated by applying Rule AR5, the proof is very similar

to the proof given in Case 4, but the axioms in the functional semantics used in the

proof are Axiom 16 and 17. Details are omitted for the sake of space.

Case 6: When φ is generated by applying Rule AR6, the proof is very similar

to the proof given in Case 3, but the axioms in the functional semantics used in the

proof are Axiom 5. Details are omitted for the sake of space.

Case 7: When φ is generated by applying Rule AR7, the proof is very similar

to the proof given in Case 3, but the axioms in the functional semantics used in the

proof are Axiom 15. Details are omitted for the sake of space.

Case 8: When φ is generated by applying Rule AR8, the proof is very similar

to the proof given in Case 1, but the axioms in the functional semantics used in the

proof are Axiom 6. Details are omitted for the sake of space. �

Note that, the above proof of the correctness of the axiom rules also demonstrate

that the rules cover all axioms except Axiom 2 and 3, which can be regarded as

‘definitions’ of the predicates HasOperation and HasAttribute. This suggests that

this set of rules is complete with regard to the set of axioms of functional semantics

in the sense that, for all first order formulas φ in the signature of Sig(N), JDKDes ∪

JNKFun|−φ implies that JDKDes∪Axm(D)|− φ. Intuitively, for each axiom of the

functional semantics, there is a corresponding axiom rule. Therefore, a deduction of

a formula φ from JDKDes ∪ JNKFun can be replaced by an equivalent deduction of the

formulas φ from JDKDes∪ Axm(D) as far as φ does not contain higher order variables.

However, the rigorous proof of the completeness still remains open, and will be a topic

for future work.

Also note that UML class diagram can be complemented with constraints in OCL.

For example, well-formedness rules as a part of the UML metamodel are specified in

the UML documentation[12]. Such OCL constraints are also axioms that instances of a

class diagram must satisfy. Thus, we have an additional rule that does not correspond

to any axioms of functional semantics.

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 193

Rule AR10 (OCL constraints).

For each constraint formally specified in OCL, we include a corresponding formula

in Axm(D). �

Note that this rule is also applicable to class diagrams used as models in all layers

of the UML metamodel hierarchy.

7 Applications of the Formal Semantics

In this section, we discuss the application of the formal semantics in model-driven

software development.

7.1 Applications of descriptive semantics

In Section 5, we illustrated with examples that the descriptive semantics mapping

can be applied to models at any layer in the multi-layer hierarchy. In the view that

‘a model is a set of statements in some modelling language’[13], descriptive semantics

of a model represents the model’s statements in a first order logic which is derived

from the modelling language by applying signature mapping on the metamodel of

the language. Predicates in the first order logic represent element types in the model

and relationships between the elements, regardless of how to interpret the element

types and the relationships in a subject domain. As shown in our previous work[4],

descriptive semantics mapping is applicable not only to class diagrams, but also to

any other types of diagrams in M1 models. As long as the type of each element and

the relationship between elements can be identified, descriptive semantics mapping is

applicable. This is the reason why descriptive semantics mapping can be applied on

models at different layers in the metamodel hierarchy.

Descriptive semantics has several applications. First, based on the definition

of ‘instance of’, descriptive semantics can be used to reason if a model satisfies a

metamodel. We have conducted case studies on some UML models to check their

well-formedness[4]. The models were translated by LAMBDES into logic systems in

SPASS format and their logic properties were verified using SPASS. For M2 models,

the descriptive semantics provides a way to logically prove if it is a valid instance of

the M3 model.

Second, when a subject domain is regarded as a collection of mathematical struc-

tures, the descriptive semantics of a model can be evaluated to a truth value with

respect to a structure in the subject domain. Therefore, descriptive semantics of a

model can be used to evaluate if a model is satisfied by a system. Hypothesis mapping

explicitly represent the specific use of the model, therefore provides the flexibility of

interpreting models differently in different context.

Third, as descriptive semantics are logical representations of the content of a

model, it can be used to reason about certain properties of the model. In our pre-

vious work, the descriptive semantics of M1 models has been used to analyse their

consistency with respect to user-defined consistency rules[4]. Descriptive semantics of

UML class diagrams has also been used to recognise patterns from software designs,

and to formally analyse the logic relations between design patterns[1, 14].

7.2 Applications of functional semantics

In section 4, we illustrated with examples that functional semantics mapping can

194 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

be applied to models at any layer in the multi-layer hierarchy. Functional semantics

formalises the properties of basic OO concepts through the mappings defined on UML

class diagrams, because the constructs in class diagrams represent the OO concepts.

Since M2 and M3 models are all UML class diagrams and based on the same OO

conception, functional semantics mapping can be equally applied to them.

For M2 models, functional semantics can be used to verify if a class diagram is

a well-defined metamodel of some models. We conducted case studies on the func-

tional semantics of UML 2.0 metamodel and a profile for AspectJ [7]. Using our

prototype tool LAMBDES, the metamodels were translated into logic systems in the

SPASS format and their logic properties such as consistency and completeness were

checked by invoking SPASS. Inconsistencies and incompleteness were discovered in

the metamodels.

For M1 models, functional semantics provides a way to generate properties of

programs from models. Properties described in a UML model, such as multiplicity

specifications or OCL rules, are a part of the functional semantics of the model, and

hence axioms over the run-time behaviour of the modelled system. Such constraints

can be used to formally verify a program, or automatically inserted into programs as

assertions or pre/post-conditions for during the code-generation phase of MDE.

8 Related work

With UML gaining popularity of in the past two decades, great efforts have been

made to formalise the semantics of UML models and metamodels, e.g. Refs. [15, 16].

The most closely related works are those addressing the semantics of basic concepts of

the metamodel hierarchy, such as models, interpretation of models, metamodels and

conformance of models to metamodels[17,18]. Among them, Poernomo[19] formalises

the metamodels and the conformance of models to a metamodel based on typed

lambda calculus. Boronat and Meseguer[4], and Egea and Rusudefines[18] define the

semantics of MOF in membership equational logic (MEL).

The following compares our approach with the existing work by discussing how

key issues in the formalisation of UML metamodel hierarchy were addressed differ-

ently.

8.1 On the metamodel hierarchy

It is recognised that many artefacts, besides UML models, can also be considered

as models and the languages specifying them as metamodels in the four-layer meta-

model hierarchy [18−20]. Examples of M0, M1 andM2 models in different technical

spaces are:

− XML: documents, schemas and the schemas of XML Schema;

− EBNF: programs, grammars and the grammar of EBNF;

− DBMS: instantiated database tables, database table declarations and database

model.

Viewing them in a same layered metamodel hierarchy enables to tackle the prob-

lems on the coordination between the artefacts and the interoperability of their sup-

porting tools, which is an important topic in the context of MDE. Existing techniques

for transforming models include XMI (XML Metadata Interchange) for bridging with

the XML space, JMI (Java Metadata Interchange) for bridging with the Java space,

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 195

CMI (Corba Model Interchange) for bridging with the Corba space, etc. Bézivin et

al[20] pointed out that such techniques are under the principle of metamodel-driven

model transformations in the sense that transformations are developed according to

M2 layer so as to transform models at M1 layer.

Incorporating artefacts from various technical spaces in a same layered meta-

model hierarchy, on one hand, reveals that a same real-world thing can be captured

by different artefacts. On the other hand, when a UML-centric viewpoint is taken,

it enables to explain the semantics of UML models within various technical spaces.

In this paper, we examine the logic relations between these artefacts and regard

the artefacts as forming subject domain of UML models. The formal definition of

subject domain characterises the widely used intuitive notion of the system being

modelled. Consequently, UML models can be interpreted to many other structures

beyond software systems or systems in the real world. To our knowledge, none of

existing researchers take this view on the interpretation of models.

8.2 On semantics of models

Addressing the under-specification and ambiguity in UML’s semantics, remark-

able efforts have been made in the past decade to formalise UML semantics. Much of

the publications are about the functional semantics aiming at ‘a deeper understanding

of OO’[13].The following proposals are among the most well-known.

The formalisation of class diagram is considered the most important type of di-

agrams in UML, and a number of proposals have been advanced. Evans et al. have

used Z schemas to define classifier, association, generalisation and attribute etc.[20].

Relations between objects and classifiers are specified as axioms. Diagrammatical

transformation rules are defined as deduction rules to prove properties of UML mod-

els. There are a number of other researchers who have also used Z or its variants,

such as Object-Z, to formalising class diagram; see Ref. [21] for a survey of different

approaches of this type. First order logic (FOL) and description logics (DLs) have

been used to formalise class diagram, too[10]. By encoding UML class diagrams in DL

knowledge bases, DL reasoning systems can be used to reason about class diagrams.

Our work on the functional semantics is inspired in the works on logic representations

of class diagrams. However, we differ from others by specifying the axioms in higher

order predicate logic in the signature derived from the metamodels. Therefore, our

definition of the functional semantics is independent of the model and the layer on

which the model is interpreted. Our rules that derive the functional semantics of a

particular model are formally proved to be correct with respect to the axioms.

Formalisation of other types of diagrams has also been investigated, especially on

state machine diagram. For example, Varro[22] has proposed a rule-based operational

semantics of state machine based on transition systems. Another work on operational

semantics of state machine has been reported in Ref. [23]. Great efforts have also been

made on formalising different diagrams in one semantic framework. Considering the

semantics of a UML model as a set of acceptable structured process, Reggio, Cerioli

and Astesianothe[24] map class diagrams and state machines into algebraic specifica-

tions in Casl-ltl. Kuske et al. has employed graph transformation in an attempt to

integrate semantics of class diagram, object diagram and state machine diagrams[25].

In our previous work on the formalisation of UML, we have also formalised other

196 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

types of UML diagrams such as sequence diagram and state machines in a unified

framework, which is generalised in this paper. Readers are referred to Ref. [4] for

details. Comparison with related works in this direction is beyond the scope of this

paper, thus omitted.

To bridge the gap between UML and formal methods, the extensibility mecha-

nism of UML profile is used to define specialisations of UML. In Ref. [26], a profile

UML-B is designed so that the semantics of specialised UML entities is defined via

a translation into B. In Ref. [27], Moller et al. used a combination of the process al-

gebra CSP and the specification language Object-Z as the intermediate specification

language to link UML and Java. A UML profile for CSP-OZ is designed with the aim

of generating part of the CSP-OZ specifications from the specialised UML models.

The above existing methods define the semantics of UML by mapping models

into a specific semantic domain, such as labelled transition systems, or OO software

systems specified in a formal notation such as Z. The properties of OO systems are

specified as axioms and used to reason about UML models. In other words, they

mostly addressed the functional semantics of UML. Each method focuses on certain

properties of OO systems, hence a certain subset of UML is formalised. However,

it is hard to see how these approaches could work either alone or together for the

full-fledged UML. Most importantly, the ambiguity in descriptive semantics is not

addressed in these works. Instead, their semantics formalisations are based on explicit

or implicit assumption on the descriptive semantics. Automation of translating UML

models to formal specifications to facilitate automated reasoning of UML models has

not been achieved in the existing methods.

As a recent effort towards the executable semantics of UML, OMG launched the

Semantics of a Foundational Subset for Executable UML Models (fUML)[13]. On the

introduction section on the semantics of models, it is stated that ‘the same model

may have different “meanings” under different interpretations ’. On the semantics

of metamodels, fUML also regards ‘the statements of the metamodel as axioms about

the modelling language’. However, such notions are only informally explained through

examples, but not reflected in the semantics definitions.

In our approach, we make it explicit how models can be interpreted differently in

different usage context through hypothesis mappings. In this paper, we discussed the

particular usage of class diagrams as metamodels and presented a set of hypothesis

mapping rules to derive the formulas represent such hypothesis from class diagrams.

8.3 On semantics of metamodels

The formal definition of modelling language BON reported in Ref. [28] is similar

to our approach. In Ref. [28], the metamodel of BON is depicted in BON notation

and then specified in formal specification language PVS. Modelling concepts of BON,

including abstractions such as Class and Feature and relationships such as Aggre-

gation and Association, are specified as types in PVS. Inheritance hierarchy in the

metamodel are mimicked by subtype relations. The semantic relations between the

modelling concepts are defined as functions in PVS. The signature of a PVS system

is manually defined according to the metamodel. Then, well-formedness constraints

on BON models are specified as axioms in PVS. When BON models are formalised

in PVS, their well-formedness with respect to the metamodel can be checked using

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 197

PVS theorem prover. It is reported that the BON metamodel was analysed and

debugged through the formalisation. In comparison, we view a metamodel as more

than the definition of the signature of the modelling language. For example, from an

inheritance hierarchy in a metamodel, not only types of model elements and subtype

relations can be generated, but also axioms on the classification of model elements.

Moreover, our method is applicable to all metamodels. In other words, the domain of

the semantics mapping is the set of metamodels in UML class diagrams rather than

a specific metamodel for a specific language.

Viewing the role of a metamodel in the four-layer metamodel hierarchy as a type

of models, a few proposals on the semantics of metamodels and MOF have been

reported in the literature Refs. [19,29].

Similar to our distinction of descriptive semantics and functional semantics, Po-

ernomo identify two aspects of a metamodel: as an object-based representation (as

data) and as a class-based representation (as a type of models)[19]. A higher-order

typed lambda calculus with dependent sum and product types in Constructive Type

Theory (CTT) is used to formalise the semantics of metamodels. Classes and objects

are treated using recursive records. The four levels of the MOF correspond to the

CTT’s predicative hierarchy of type universes, where Type0, Type1, Type2, · · · are

defined. M2 level classifiers, for instance, are given a dual representation as objects

of the MOF class types and as Type1class types. In this framework, the conformance

relation is implicitly provided by construction: only valid models can be defined as

terms, and their definition constitutes a formal proof of the fact that the model be-

longs to the corresponding type by means of the Curry-Howard isomorphism.

Boronat and Meseguer propose an algebraic semantics for MOF[29]. The prob-

lems they address are similar to ours, i.e., the basic notions of the hierarchy not yet

fully formally defined in the current MOF standard, including what is a model, what

is a metamodel and what is reflection in the MOF framework, etc. They present a re-

flective, algebraic, executable framework for precise metamodelling based on member-

ship equational logic (MEL) that supports the MOF standard. The formal framework

provides a formal semantics of the basic notions. In particular, they formalize the

notions of: (i) model type which is a type in MEL allowing models to be considered

as first-class citizens, (ii) metamodel realization which is a MEL theory referring to

the mathematical representation of a metamodel, and (iii) conformance relation, by

means of a reflective semantics that associates a mathematical metamodel realization

to each metamodel in MOF. By using the Maude language, which directly supports

MEL specifications, this formal semantics is executable. This executable semantics

has been integrated within the Eclipse Modeling Framework as a plug-in tool called

MOMENT2.

Egea and Rusu investigate conformance of models to metamodels by formalising

models with MEL[30]. First, two invariants are defined: a metamodel does not have

cyclic generalizations and each association is linked to two classes. Then, both meta-

models enriched with OCL invariants and models are represented as MEL specifica-

tions. Two levels of conformance are defined: structurally conformant and semantical

conformance. A model is structural conformance to a metamodel if the model theory

provides an actual interpretation of the MEL specification denoting the metamodel.

Semantical conformance requires, in addition to structural conformance, that all the

198 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

invariants imposed on the metamodel become true in its instance model.

In comparison, Egea and Rusu’s notion of structural conformance is similar to

ours, and their way to evaluate the conformance of a model to a metamodel through

formalising them to logic theories is also close to ours. There are two key differences.

First, we regard OCL invariants within a model as part of the model. With axiom

mapping, OCL invariants within a model are syntactically transformed to first order

formulas, which is a part of the axioms imposed on the instances of the model. Sec-

ond, the two pre-defined invariants are unnecessary in our semantics definition. In

particular, if there is a generalization cycle in a class diagram, axioms generated from

it are logically inconsistent, indicating that it cannot acts as a metamodel of some

models. A formal definition of well-defined metamodel was given in Ref. [7]. This

difference reveals that our axiom mapping is sufficient and necessary to express the

properties that a well-defined metamodel must hold. We do not require an associ-

ation to have two ends, as it is stated in UML superstructure that ‘An association

specifies a semantic relationship that can occur between typed instances. It has at

least two ends represented by properties, each of which is connected to the type of the

end.’[12] In summary, we do not impose additional information to the semantics of a

metamodel.

9 Conclusion and Future Work

The contribution of the paper is a unified semantic framework for the multi-

layer metamodel hierarchy. For an individual model, its descriptive semantics and

functional semantics are distinguished to capture different aspects of semantics of

models. They are integrated by linking the functional semantics of metamodel at

layer Mi+1 to the descriptive semantics of models at layer Mi, where i can be any

natural number >0.

Our semantics provides clear and formal definitions of the basic concepts in the

metamodel hierarchy. First, the semantics of a model is a set of statements about the

system under study. These statements are represented as predicate logic formulas in

the signature defined by the metamodel of the model. Furthermore, they are classified

into two parts, descriptive ones and functional ones. The former is used to judge if

a system is an instance of the model, and the latter is about the properties of the

functionality and dynamic behaviours of the system.

Second, the concept of subject domain of a model is formally defined to be a set of

mathematical structures of the signature defined by the model. Therefore, whether a

collection of structures qualify to be a subject domain of some models can be precisely

determined. Not only systems can be regarded as such mathematical structures, but

also models at various layers.

Third, the instance-of relationship between system and model (also between mod-

els and metamodels) is formally defined, which enables to precisely determine the

relationship between models and metamodels through logic reasoning. The semantic

definition is equally applicable to various layers in the metamodel hierarchy.

Finally, we revised the semantics mapping rules that we proposed in our previous

work on UML models so that they are applicable to all layers. In this paper, we also

proved the correctness of the axiom mapping rules with respect to the static functional

semantics. We have also proved the correctness of descriptive semantics mapping rules

Lijun Shan, et al.: Unifying the semantics of models and meta-models in ... 199

and the correctness of employing a theorem prover to validate the instance-of relation

between models and metamodels.

We have considered essential elements in class diagrams in the current semantics

definition, but have not considered some elements e.g. visibility property. To express

the semantics, especially the functional semantics of such elements, is among our

further work.

We will also explore the application of the semantics definitions to various model

analysis tasks in MDE. One possible direction is to apply functional semantics on

M1 model for model-driven program verification. Functional semantics of M3 model

can be used to verify the logic consistency of meta-metamodel as well as the well-

formedness of M2 models. We will also investigate the mechanism of reflection in

MOF model.

The aim of the four-layer metamodel hierarchy is to facilitate the interchange of

models in different formats. To bridge different technical spaces, research on model

transformations and tool interoperability based on metamodels and meta-metamodels

have been reported in the literature[20, 31, 32]. We consider to work on this direction

based on the semantics presented in this paper and applying institution theory[33] in

the similar way that graphic extension of BNF is studied[34].

References

[1] Zhu H, Shan L, Bayley I, Amphlett R. A formal descriptive semantics of UML and its appli-

cations. In: Lano K, eds. UML 2 Semantics and Applications, John Wiley & Sons, Inc. 2009.

95–123.

[2] OMG. Unified Modeling Language: Infrastructure. Version 2.3. Object Management Group.

2010. http://www.omg.org/spec/UML/2.3/. (Last access: Feb 2011)

[3] OMG. Meta Object Facility (MOF) 2.0 Core Specification. Object Management Group. 2006.

http://www.omg.org/cgi-bin/doc?formal/2006-01-01. (Last access: Feb 2011)

[4] Shan L, Zhu H. A formal descriptive semantics of UML. Proc. of the 10th International Con-

ference on Formal Engineering Methods (ICFEM 2008). 2008. 375–396.

[5] Seidewitz E. What models mean. IEEE Software, 2003, 20(5): 26–31.

[6] Max Planck Institut Informatik. SPASS: An Automated Theorem Prover for First-Order Logic

with Equality. 2011. http://www.spass-prover.org. (Last access: Jan 2011)

[7] Shan L, Zhu H. Semantics of metamodels in UML. Proc. of the 3rd IEEE International Sym-

posium on Theoretical Aspects of Software Engineering (TASE 2009). 2009. 55–62.

[8] Dong J, Zhao Y, Peng T. Architecture and design pattern discovery techniques – a review.

Proc. of the 2007 International Conference on Software Engineering Research and Practice

(SERP 2007). Volume II. 2007. 621–627.

[9] Atkinson C. Meta-modeling for distributed object environments. Proc. of the 1st International

Conference on Enterprise Distributed Object Computing. 1997. 90–101.

[10] Berardi D, Cal A, Calvanese D. Reasoning on UML class diagrams. Artificial Intelligence, 2005,

168(1): 70–118.

[11] Kaneiwa K, Satoh K. Consistency checking algorithms for restricted UML class diagrams. Proc.

of the 4th International Symposium on Foundations of Information and Knowledge Systems

(FoIKS 2006). 2006. 219–239.

[12] OMG. Unified Modeling Language: Superstructure. Version 2.3. Object Management Group.

2010. http://www.omg.org/spec/UML/2.3/. (Last access: Feb 2011)

[13] OMG. Semantics of a Foundational Subset for Executable UML Models. 1.0. Beta 3 Edition.

2010. http://www.omg.org/spec/FUML/. (Last access: Feb 2011)

[14] Zhu H, Bayley I, Shan L, Amphlett R. Tool support for design pattern recognition at model level.

Proc. of the 33rd Annual IEEE International Computer Software and Applications Conference

200 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

(COMPSAC 2009). 2009. 228–233.

[15] Clark T, Evans A, Kent S. The metamodelling language calculus: Foundation semantics for

UML. Proc. of the 4 International Conference on Fundamental Approaches to Software Engi-

neering (FASE 2001). 2001. 17–31.

[16] Favre L. Foundations for MDA-based forward engineering. Journal of Object Technology, 2005,

4(1): 129–153.

[17] Béivin J. On the unification power of models. Software and System Modeling, 2005, 4(2):

171–188.

[18] Küne T. Matters of (meta-) modeling. Software and Systems Modeling, 2006, 5(4): 369–385.

[19] Poernomo I. The meta-object facility typed. Proc. of the 21st Annual ACM Symposium on

Applied Computing (SAC 2006). 2006. 1845–1849.

[20] Béivin J, Devedzic V, Djuric D, Favreau J-M, Gasevic D and Jouault F. An M3-neutral infras-

tructure for bridging model engineering and ontology engineering. Proc. of the 1st International

Conference on Interoperability of Enterprise Software and Applications. 2005. 159–171.

[21] Amáio N and Polack F. Comparison of formalisation approaches of UML class constructs in Z

and Object-Z. Proc. of the 3rd International Conference of B and Z Users (ZB 2003). LNCS

2651. 2003. 339–358.

[22] Varro D. A formal semantics of UML statecharts by model transition systems. Proc. of the 1st

International Conference on Graph Transformation (ICGT 2002). LNCS 2505. 2002. 378–392.

[23] Beeck Mvd. A structured operational semantics for UML-statecharts. Software and System

Modeling, 2002,1(2): 130–141.

[24] Reggio G, Cerioli M and Astesiano E. Towards a rigorous semantics of UML supporting its

multiview approach. Proc. of the 4th International Conference on Fundamental Approaches to

Software Engineering (FASE 2001). LNCS 2029. 2001. 171–186.

[25] Kuske S, Gogolla M, Kollmann R and Kreowski H-J. An integrated semantics for UML class,

object and state diagrams based on graph transformation. Proc. of the 3rd International

Conference on Integrated Formal Methods (IFM 2002). LNCS 2335. 2002. 11–28.

[26] Snook C and Butler M. UML-B: Formal modeling and design aided by UML. ACM Transactions

on Software Engineering and Methodology, 2006, 15(1): 92–122.

[27] Möler M, Olderog E-R, Rasch H and Wehrheim H. Linking CSP-OZ with UML and Java: A

case study. Proc. of the 4th International Conference on Integrated Formal Methods (IFM

2004). 2004. 267–286.

[28] Paige RF and Ostroff JS. Metamodelling and conformance checking with PVS. Proc. of the 4th

International Conference on Fundamental Approaches to Software Engineering (FASE 2001).

2001. 2–16.

[29] Boronat A and Meseguer J. An algebraic semantics for MOF. Formal Aspects of Computing,

2010, 22(3-4): 269–296.

[30] Egea M and Rusu V. Formal executable semantics for conformance in the MDE framework.

Innovations in Systems and Software Engineering, 2010, 6: 73–81.

[31] Bruneliere H, Cabot J, Clasen C, Jouault F and Béivin J. Towards model driven tool interoper-

ability: Bridging Eclipse and Microsoft modeling tools. Proc. of the 6th European Conference

on Modelling Foundations and Applications (ECMFA 2010). 2010. 32–47.

[32] Jouault F, Vanhooff B, Bruneliere H, Doux G, Berbers Y and Béivin J. Inter-DSL coordination

support by combining metamodeling and model weaving. Proc. of the 25th Annual ACM

Symposium on Applied Computing (SAC 2010). 2010. 2011–2018.

[33] Goguen JA. Data, schema, ontology and logic integration. Logic Journal of the IGPL, 2005,

13(6): 685–715.

[34] Zhu H. On the theoretical foundation of meta-modelling in graphically extended bnf and first

order logic. Proc. of the 4th IEEE International Symposium on Theoretical Aspects of Software

Engineering (TASE 2010). 2010. 95–104.

