文章编号: 2095-4980(2015)05-0718-04

220 GHz 折叠波导行波管慢波结构的损耗研究

潘 攀,李含雁,冯进军

(北京真空电子技术研究所 微波电真空器件国家重点实验室, 北京 100015)

摘 要:在太赫兹频段,折叠波导慢波结构的损耗很大,因此需要在设计 220 GHz 折叠波导 行波管慢波结构时进行深入研究。首先通过软件仿真的方法预测了慢波结构的 S 参数,然后利用 紫外光刻、电镀和微铸模成型(UV-LIGA)工艺制作了慢波结构样品并进行测量。测量结果表明,该 样品在 220 GHz 时衰减系数约为 240 dB/m,与仿真结果符合较好。显微照片显示,该样品产生了 形变,造成高频段 2 种结果存在差异。

关键词:折叠波导;损耗;衰减;太赫兹 中图分类号:TN772 **文献标识码:**A

doi: 10.11805/TKYDA201505.0718

Study on loss of the slow wave structure of a folded waveguide TWT at 220 GHz

PAN Pan, LI Hanyan, FENG Jinjun

(National Key Laboratory of Science and Technology on Vacuum Electronics, Beijing Vacuum Electronics Research Institute, Beijing 100015, China)

Abstract: The loss of the folded waveguide slow wave structure is significant in the terahertz regime, which is necessary to be well studied as designing the slow wave structure of a folded waveguide Traveling Wave Tube(TWT) at 220 GHz. In this paper, the *S* parameters of the slow wave structure are predicted firstly by simulation, and then the sample of the slow wave structure is fabricated by Ultra Violet-Lithographie, Galanoformung, Abformung(UV-LIGA) process and measured. The measurement result shows that the attenuation factor of the sample is about 240 dB/m at 220 GHz, which is reasonably consistent with the simulation result. The micrographs show that there is a discrepancy between two results at higher frequencies due to the sample deformation.

Key words: folded waveguide; loss; attenuation; terahertz

折叠波导行波管是一种重要的太赫兹真空电子器件,具有大功率、宽频带、易加工和便于能量耦合等优点。 中国电子科技集团第十二研究所对 W 波段折叠波导行波管已经开展了深入的研究^[1-2]。随着频率进一步提高,折 叠波导慢波结构的尺寸不断减小,使得电磁波的传输损耗越来越大,已成为重要的设计参量。在太赫兹频段,电 磁波的趋肤深度接近甚至小于金属的表面粗糙度,此时再用金属的直流电导率计算损耗将产生很大误差,因此在 慢波结构设计时通常用金属的等效电导率来计算损耗。国内外对于 220 GHz 折叠波导行波管已开展了部分研究 工作^[3-5],但是关于等效电导率和损耗的研究较少,且结论相差较大。本文针对 220 GHz 折叠波导行波管慢波结 构的损耗开展仿真与实验研究,为后续的设计提供重要的参考数据。

1 等效电导率

在 3 cm 波段的波导和谐振腔中, Morgan 发现电磁波的损耗比理论值高 10%到 60%,并且随着波长减小,这种差异进一步变大^[6]。他认为由于电磁波的趋肤深度与金属的表面粗糙度处于同一数量级,粗糙表面使得面电流的传输路径变长,造成损耗增大,并进一步给出了几种理想情况下的理论解。Hammerstad 和 Bekkadal 在 Morgan 的研究基础上通过数据拟合给出了计算等效电导率的 HB 公式^[7]。Yang 还通过实验证明,在 400 GHz 和 650 GHz 下,金的等效电导率可以用该公式来计算^[8]。HB 公式的一种表述为:

$$\sigma_{\rm c} = \frac{\sigma}{\left\{1 + \frac{2}{\pi} \arctan\left[1.4\left(\frac{h}{s}\right)^2\right]\right\}^2}$$
(1)

式中: 趋肤深度 $s = \sqrt{2/\omega\mu\sigma}$; h 为表面粗糙度; σ 为直流 电导率。

潘

以 220 GHz 的电磁波为例,它在铜材料中的趋肤深度 约为 0.14 μ m,而经过共聚焦显微镜测量,采用 UV-LIGA 工艺制作的铜慢波结构的表面粗糙度约为 0.2 μ m。电磁波 的趋肤深度与金属的表面粗糙度正处于同一数量级,因此 公式(1)从理论上是适用的。据此可以计算出 220 GHz 时, 铜的等效电导率 $\sigma_c \approx 1.7 \times 10^7$ S/m。

图 1 为 220 GHz 时,铜的等效电导率与表面粗糙度 的关系。可以看出,随着表面粗糙度的增大,等效电导率 将大幅降低。不同的参考文献中等效电导率的数据差异正

图 1 220 GHz 时铜的等效电导率与表面粗糙度的关系(HB公式)

是由不同的工艺水平造成的。为了正确计算现有工艺水平制作的慢波结构损耗,必须进行仿真与实验验证。

2 软件仿真

图 2(a)为 220 GHz 折叠波导行波管慢波结构的示意图,图中标注的主要尺寸数值为: *a*=0.42 mm, *b*=0.16 mm, *p*=0.31 mm, *h*=0.25 mm, *d*=0.24 mm, *l*=120*p*=37.2 mm。图 2(b)为用 CST 微波工作室计算的仿真模型,中间为 120 个周期的折叠波导慢波结构,两端为过渡到 WR4.3 波导的渐变结构。背景材料为有耗金属,等效电导率为 1.7×10⁷ S/m。该模型的 S 参数仿真结果见图 3。

(a) schematic(b) simulation modelFig.2 Schematic and simulation model of the folded waveguide slow wave structure图 2 折叠波导慢波结构示意图及其仿真模型

WR5.1 to

WR10 taper

WR3.4 to

WR10 taper

140 GHz-220 GHz

module

220 GHz-325 GH

module

WR10 to

WR4.3 taper

WR10 to

WR4.3 taper

WR10 to

WR5.1 taper

WR10 to

WR3.4 taper

140 GHz–220 GHz

module

220 GHz-325 GHz

module

WR4.3 to

WR10 taper

WR43 to

WR10 taper

3 样品测量

图 4 为用 UV-LIGA 工艺制作的 220 GHz 折叠波导行波管慢波结构样品。在东南大学 毫米波国家重点实验室对该样品的 *S* 参数进 行测量,使用矢量网络分析仪和 2 种频率扩 展模块(140 GHz~220 GHz, 220 GHz~ 325 GHz),如图 5 所示。由于该样品端口为 WR4.3 波导,而 2 种频率扩展模块的端口分 别为 WR5.1(140 GHz~220 GHz)和 WR3.4 (220 GHz~325 GHz),因此需要用过渡波导进 行转换。在测量样品前,先对过渡波导进行 测量,其 S_{21} 约为–1.5 dB, S_{11} 小于–30 dB。 随后对样品进行测量,并从整体的 S_{21} 中减去 过渡波导的 S_{21} ,以此作为慢波结构的 S_{21} 。

4 结果分析

图 3 是 220 GHz 折叠波导行波管慢波结

(b) 220 GHz-325 GHz Fig.5 Schematic of the measurement of the sample 图 5 样品测量示意图

Fig.4 Sample of the slow wave structure fabricated by UV-LIGA process 图 4 用 UV-LIGA 工艺制作的慢波结构样品

Vector Network

Analyzer

DUT

(a) 140 GHz-220 GHz

Vector Network Analyzer

DUT

构的 *S* 参数仿真与测量结果,其中点为仿真结果,实线为样品测量结果。从图中可以看出,在 180 GHz~220 GHz 频率范围内,2 种结果的 *S*₂₁比较一致,而实测的 *S*₁₁有较大波动,这是由于样品的不规则变形造成的;而在 220 GHz~260 GHz 频率范围内,实测的 *S*₁₁明显高于仿真结果,而实测的 *S*₂₁明显低于仿真结果,这是由于样品的规则变形造成的。

图 6 为样品的显微照片,可以看出,慢波结构样品在经过高温退火后,端口和折叠波导起点变形较大,这种几何不连续会对电磁波产生明显的反射,使得实测的 *S*₁₁ 波动较大。从图 6(a)中还可以看到,实际加工的电子注通道并不在图形的几何中轴线上,而是向下偏了 0.02 mm,经过仿真计算,此时在 230 GHz 附近存在一个止带,从而引起该频率附近的 *S*₁₁较大而 *S*₂₁较小。此外,还发现该样品存在一种规则的变形,如图 7 所示。样品在高温环境下释放应力,电铸形成的自由面的形变量比基底的形变量大,导致波导的截面不再是矩形,而是变成了中间窄、两端宽的沙漏形。测量结果显示,中间的宽度比两端要小 0.02 mm~0.04 mm,经过仿真计算,此时基模的上截止频率从原先的 270 GHz 降低到 250 GHz 左右,这与测量结果相符合。

Fig.7 Schematics of the deformation of the sample 图 7 样品形变的示意图

由 S 参数可以计算出该慢波结构的衰减系数^[9]:

$$\alpha \approx \frac{10 \lg \frac{1 - |S_{11}|^2}{|S_{21}|^2}}{I}$$
(2)

图 8 为 220 GHz 折叠波导行波管慢波结构的衰减常数,其中点为仿真结果,实线为样品测量结果。可以看到,在 180 GHz~220 GHz 频率范围内,2 种结果比较一致;在 220 GHz~260 GHz 频率范围内,由于样品变形,实测结果明显高于仿真结果。对设计 220 GHz 折叠波导行波管高频结构而言,关注的是 220 GHz 附近的衰减系数,约为 240 dB/m。

通过软件仿真和样品测量,证明了采用式(1)计算等效电导率,再用软件仿真计算损耗的方法是可行的;同时确定了用 UV-LIGA 工艺制作的 220 GHz 折叠波导行波管慢波结构的衰减系数约为 240 dB/m,用于指导下一步设计。显微照片显示,该样品有一定变形,这影响了测量结果。今后将继续改进工艺,制作尺寸更理想的样品,进一步验证研究结果。式(1)表明,减小慢波结构的表面粗糙度将大幅提高等效电导率,从而降低损耗。事实上,UV-LIGA 工艺可以达到的表面粗糙度远小于目前测量到的 0.2 μm^[10],为此,需要对这种工艺做更深入的研究。

参考文献:

5

结论

- FENG Jinjun, CAI Jun, et al. Development of W-band folded waveguide pulsed TWTs[J]. IEEE Transactions on Electron Devices, 2014,61(6):1715-1725.
- [2] HU Yinfu, FENG Jinjun, LIU Jingkai, et al. Progress of wide bandwidth W-band 20W CW TWT[C]// IEEE International Vacuum Electronics Conference(IVEC). Monterey, CA, USA: IEEE, 2014:179-180.
- [3] 王亚军,陈樟,程焰林,等. 太赫兹折叠波导慢波结构的设计与微加工[J]. 红外与毫米波学报, 2014,33(1):62-67.
 (WANG Yajun,CHEN Zhang,CHENG Yanlin, et al. Design and microfabrication of folded waveguide circuit for THz TWT[J]. Journal of Infrared Millimeter Waves, 2014,33(1):62-67.)
- [4] Joye C D,Cook A M,Calame J P,et al. Demonstration of a high power, wideband 220 GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Transactions on Electron Devices, 2014,61(6):1672-1678.
- [5] 周泉丰,徐翱,阎磊,等. 0.22 THz 折叠波导行波管设计[J]. 太赫兹科学与电子信息学报, 2014,12(2):166-170. (ZHOU Quanfeng,XU Ao,YAN Lei,et al. Study of designing 0.22 THz folded waveguide traveling wave tubes[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(2):166-170.)
- [6] Morgan S P. Effect of surface roughness on eddy current losses at microwave frequencies[J]. Journal of Applied Physics, 1949,20(4):352-362.
- [7] Hammerstad E,Jensen O. Accurate models for microstrip computer-aided design[C]// IEEE MTT-S International Microwave Symposium Digest. Washington, DC, USA: IEEE, 1980:28-30.
- [8] YANG B B, Kirley M P, Booske J H. Theoretical and empirical evaluation of surface roughness effects on conductivity in the terahertz regime[J]. IEEE Transactions on Terahertz Science & Technology, 2014,4(3):368-375.
- [9] 张克潜,李德杰. 微波与光电子学中的电磁理论[M]. 2版. 北京:电子工业出版社, 2001. (ZHANG Keqian,LI Dejie. Electromagnetic Theory for Microwaves and Optoelectronics[M]. 2nd ed. Beijing:Publishing House of Electronics Industry, 2001.)
- [10] Shin Y M,Barnett L R,Gamzina D,et al. Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching[J]. Applied Physics Letters, 2009,95(18):181505-181505-3.

作者简介:

潘攀(1986-),男,北京市人,在读硕士 研究生,从事亚毫米波及太赫兹真空电子器件 研制.email:p-pan@hotmail.com. **李含雁**(1976-), 女, 浙江省嵊州市人, 高级 工程师, 从事微细加工工艺研究.

冯进军(1966-),男,山西省运城市人,研究员,从事真空电子学、微波电子学、等离子体电子学、MEMS技术、太赫兹真空电子学等研究.