首页 | 官方网站   微博 | 高级检索  
     


Imidazole‐Grafted Nanogels for the Fabrication of Organic–Inorganic Protein Hybrids
Abstract:Here, a platform for the development of highly responsive organic–inorganic enzyme hybrids is provided. The approach entails a first step of protein engineering, in which individual enzymes are armored with a porous nanogel decorated with imidazole motifs. In a second step, by mimicking the biomineralization mechanism, the assembly of the imidazole nanogels with CuSO4 and phosphate salts is triggered. A full characterization of the new composites reveals the first reported example in which the assembly mechanism is triggered by the sum of Cu(II)–imidazole interaction and Cu3(PO4)2 inorganic salt formation. It is demonstrated that the organic component of the hybrids, namely the imidazole‐modified polyacrylamide hydrogel, provides a favorable spatial distribution for the enzyme. This results in enhanced conversion rates, robustness of the composite at low pH values, and a remarkable thermal stability at 65 °C, exhibiting 400% of the activity of the mineralized enzyme lacking the organic constituent. Importantly, unlike in previous works, the protocol applies to the use of a broad range of transition metal cations (including mono‐, di‐, and trivalent cations) to trigger the mineralization mechanism, which eventually broadens the chemical and structural diversity of organic–inorganic protein hybrids.
Keywords:biomineralization  nanobiohybrids  nanoflowers  protein stabilization  single enzyme nanogels
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号