doi:10.3969/j.issn.2095-1744.2020.04.008

熔盐电解 TiO₂/SiO₂ 混合物制备钛硅合金的 热力学分析

周忠仁^{1,2},张英杰^{1,2},华一新¹,董 鹏^{1,2}

(1. 昆明理工大学 冶金与能源工程学院,昆明 650093;2. 锂离子电池及材料国家地方联合工程实验室,昆明 650093)

摘 要:以熔盐电解 TiO₂/SiO₂ 混合物制备钛硅合金为研究对象,通过热力学计算,分析了 TiO₂/SiO₂ 在直接电解还原过程中可 能的反应路径。结果表明,TiO₂和 SiO₂ 的电脱氧反应倾向于 TiO₂ 在单质 Si 基础上电解还原得到 TiSi₂,以及 SiO₂ 在单质 Ti 基 础上得到 Ti₅Si₃ 合金。中间产物 CaTiO₃和 CaSiO₃稳定,较难被还原。增大熔盐中 O²⁻的活度有利于降低 CaTiO₃和 CaSiO₃的 分解电压。CaTiO₃ 在电脱氧后优先与 Si 反应生成 TiSi₂,CaSiO₃ 在电脱氧后优先与 Ti 反应直接生成 Ti₅Si₃。 关键词:TiO₂/SiO₂;钛硅合金;熔盐电解;热力学计算 中图分类号:TG146.4⁺14 **文献标志码:**A **文章编号:**2095-1744(2020)04-0051-06

Thermodynamic Analysis of Preparing Titanium-silicon Alloys by Electrolyzing TiO₂/SiO₂ Mixture in Molten Salt

ZHOU Zhongren^{1,2}, ZHANG Yingjie^{1,2}, HUA Yixin¹, DONG Peng^{1,2}

(1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,

Kunming 650093, China;

 National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming 650093, China)

Abstract: In the present research, the potential reaction routes in the process of electrolyzing TiO_2/SiO_2 mixture have been analyzed by the thermodynamic calculations during the preparation of titanium-silicon alloys from TiO_2/SiO_2 in molten salt. The results suggest that the electro-deoxidization of TiO_2 is preferentially reduced on the basis of silicon to form $TiSi_2$, and the reduction of SiO_2 is inclined to producing Ti_5Si_3 with the help of Si. The intermediates $CaTiO_3$ and $CaSiO_3$ are stable that are hard to be reduced. The increase in the activity of O^{2-} in molten salt is in favor of decreasing the decomposition voltages of $CaTiO_3$ and $CaSiO_3$. As $CaTiO_3$ is electrolyzed, it is easy to react with Si to form $TiSi_2$, and $CaSiO_3$ reacts directly with Ti to form Ti_5Si_3 , respectively.

Key words: TiO2 / SiO2; titanium-silicon alloys; molten salt electrolysis; thermodynamic calculation

收稿日期:2019-10-25

基金项目:国家自然科学基金资助项目(51804148);云南省应用基础研究计划项目(2018FD038)

Fund:Supported by the National Natural Science Foundation of China (51804148); Provincial Natural Foundation of Yunnan (2017FB085) 作者简介:周忠仁(1988—),博士,讲师,主要从事新能源材料与冶金电化学制备交叉研究。

通信作者:华一新(1959一),博士,教授,主要从事复杂有色金属选冶研究。

引用格式:周忠仁,张英杰,华一新,等. 熔盐电解 TiO₂/SiO₂ 混合物制备钛硅合金的热力学分析[J]. 有色金属工程,2020,10(4):51-56.

ZHOU Zhongren,ZHANG Yingjie,HUA Yixin,et al. Thermodynamic Analysis of Preparing Titanium-silicon Alloys by Electrolyzing TiO₂/SiO₂ Mixture in Molten Salt[J]. Nonferrous Metals Engineering,2020,10(4),51-56.

难熔固态金属氧化物熔盐电解 Farth-Fray-Chen Cambridge process (简称"FFC process")工艺^[1]自 提出以来获得了广泛关注。该方法是将难熔氧化物 预处理后组装成阴极,以惰性电极如 Pt,非惰性电 极如石墨等作为阳极,采用 CaCl₂ 系熔盐为电解质, 施加一定槽电压后进行电解,最终在阴极获得金属, O²⁻溶解在电解质中并迁移至阳极进行放电。采用 CaCl₂ 作为电解质是因为含 CaCl₂ 组分的熔盐能够 溶解 O^{2−}。在 900 °C下, CaCl₂ 熔盐可以溶解 20%(摩 尔百分数)的 CaO^[2],在等摩尔比的 CaCl₂-NaCl 熔 盐中,可以溶解 16.5 mol%的 CaO^[3]。由于 CaO 在熔盐中电离成 Ca²⁺ 和 O²⁻,可以把 CaO 的溶解度 看成 O²⁻在熔盐中的溶解能力。自熔盐电解法提出 以来,科研人员已经合成出单质 Ti^[4]、Si^[5-7]、Zr^[8]等 金属以及 FeTi^[9]、Nb₃Al^[10]、TiSi^[11]等合金。 ZOU 等^[12] 通过电解高钛渣制备得到 Ti₅Si₃ 合金, 发现在制备 Ti₅Si₃ 合金时涉及到多相反应,电化学 还原过程复杂。因此,本文以 TiO₂/SiO₂ 混合物料 为原料,采用熔盐电解法制备钛硅合金,采用热力学 计算分析 TiO_2/SiO_2 的电解还原过程,考察 O^{2-} 在 熔盐中的活度对电解反应分解电压的影响规律。

1 TiO₂/SiO₂ 电解反应及热力学计算

熔盐电解 TiO₂/SiO₂ 混合氧化物制备钛硅合 金的反应过程复杂,涉及 TiO₂、SiO₂ 的液-固相电解 还原反应以及固-固相钛硅合金化过程。根据文 献^[13]报道,TiO₂ 在熔盐中的电解是分步进行的,伴 随着中间产物如 CaTiO₃、TiO_x(0< x < 2)的生成。 其中,CaTiO₃ 是由于当电解质采用 CaCl₂ 系熔盐体 系时,熔盐中的 Ca²⁺参与 TiO₂ 的电解还原而生成。 同时,SiO₂ 的电解还原亦伴随着中间产物 CaSiO₃ 的生成。在进行上述氧化物电解还原热力学计算 时,为简化计算,假定 TiO₂、SiO₂ 在电化学还原过 程中的中间产物分别为 CaTiO₃ 和 CaSiO₃,忽略钛、 硅低价氧化物的电脱氧反应。在钛硅合金化反应 中,钛硅合金的分子式包括 Ti₅Si₃、TiSi 和 TiSi₂。 当阳极采用惰性电极(如 Pt)时,所发生的电极反应 如下:

氧化物电脱氧阶段:

$$TiO_2(s) = Ti(s) + O_2(g)$$
 (1)

$$TiO_{2}(s) + \lceil CaO \rceil = CaTiO_{3}(s)$$
 (2)

$$CaTiO_3(s) = Ti(s) + [CaO] + O_2(g)$$
(3)

$$\operatorname{SiO}_2(s) = \operatorname{Si} + \operatorname{O}_2(g) \tag{4}$$

$$SiO_2(s) + [CaO] = CaSiO_3(s)$$
(5)

 $CaSiO_3(s) = Si(s) + [CaO] + O_2(g)$ (6)

 钛硅合金化阶段 II:
 (6)

 $Ti(s) + 2Si(s) = TiSi_2(s)$ (7)

 $5Ti(s) + 3Si(s) = Ti_5Si_3(s)$ (8)

$$Ti(s) + Si(s) = TiSi(s)$$
(9)

$$TiO_2(s) + \frac{3}{5}Si(s) = \frac{1}{5}Ti_5Si_3(s) + O_2(g)$$
 (10)

$$CaTiO_{3}(s) + \frac{3}{5}Si(s) = \frac{1}{5}Ti_{5}Si_{3}(s) + [CaO] +$$

$$O_{2}(g)$$
(11)
$$TiO_{2}(s)+2Si(s)=TiSi_{2}(s)+O_{2}(g)$$
(12)
$$CaTiO_{3}(s)+2Si(s)=TiSi_{2}(s)+[CaO]+O_{2}(g)$$

(13)

$$SiO_2(s) + \frac{5}{3}Ti(s) = \frac{1}{3}Ti_5Si_3(s) + O_2(g)$$
 (14)

$$CaSiO_{3}(s) + \frac{5}{3}Ti(s) = \frac{1}{3}Ti_{5}Si_{3} + [CaO] + O_{2}(g)$$
(15)

$$SiO_2(s) + \frac{1}{2}Ti(s) = \frac{1}{2}TiSi_2(s) + O_2(g)$$
 (16)

$$CaSiO_3(s) + \frac{1}{2}Ti(s) = \frac{1}{2}TiSi_2(s) + [CaO] +$$

 $O_2(g) \tag{17}$

式中,[CaO]指 O²⁻和 Ca²⁺结合成 CaO 并溶解 在熔盐电解质中。

根据热力学数据库和计算软件 HSC 6.0 分别 计算了各物质在标准态下反应的 ΔG^{θ} 和 E^{θ} 值, 计 算温度为700~900℃,步长为50℃,所得数据见表 1。从表1可以看出,在给定温度范围内,CaTiO₃的 生成反应、CaSiO₃的生成反应、以及钛硅合金 TiSi、 Ti₅Si₃、TiSi₂的生成反应吉布斯自由能均为负值, 说明上述反应是自发进行。在 800 ℃下, CaTiO₃ 的 生成反应吉布斯自由能为-190.88 kJ/mol, CaSiO₃ 的生成反应吉布斯自由能为一90.94 kJ/mol,暗示 了中间产物 CaTiO₃ 和 CaSiO₃ 的生成不可避免,且 CaTiO₃的生成反应更容易进行。在高温作用下,电 解还原得到的单质 Ti 和 Si 在高温下亦能够自发进 行,且在 800 °C下,生成 Ti₅Si₃ 合金的反应和 TiSi₂ 合金的反应吉布斯自由能较负,可以推测,钛硅合金 的产物主要包括 Ti₅Si₃ 和 TiSi₂ 合金。因此,中间 产物 CaTiO₃ 和 CaSiO₃ 直接电解脱氧可能发生的 反应见式 10~17。

根据电化学反应的标准吉布斯自由能公式(18) 可以得到反应的理论分解电压 *E*^{θ[14]},各电解反应在 700~900 ℃时理论分解电压计算结果见表 2。

		ia i anng int anter		2
Reaction number	$\Delta G^{ heta}$ -T relationships -	$\Delta G^{ heta}/(\mathbf{k}\mathbf{J}ullet\mathbf{mol}^{-1})$		
Reaction number		700 °C	800 °C	900 °C
1	$\Delta G^{\theta} = -0.18T + 891.32$	767.79	750.15	732.48
2	$\Delta G^{\theta} = -0.014 T - 179.27$	-189.48	-190.88	-192.38
3	$\Delta G^{\theta} = -0.17T + 973.02$	854.13	837.14	820.15
4	$\Delta G^{\theta} = -0.17T + 856.73$	735.35	717.88	700.66
5	$\Delta G^{\theta} = 9.6 \times 10^{-4} T - 91.71$	-90.9	-90.94	-90.84
6	$\Delta G^{\theta} = -0.17T + 947.84$	826.25	808.82	791.5
7	$\Delta G^{\theta} = 5.76 \times 10^{-3} T - 168.55$	-164.5	-163.96	-163.33
8	$\Delta G^{\theta} = -0.8 \times 10^{-2} T - 583.05$	-588.86	-589.94	-590.48
9	$\Delta G^{\theta} = -2.68 \times 10^{-4} T - 129.35$	-129.54	-129.56	-129.49
10	$\Delta G^{\theta} = -0.18T + 774.71$	650.02	632.16	614.38
11	$\Delta G^{\theta} = -0.17 T + 856.4$	736.36	719.15	702.05
12	$\Delta G^{\theta} = -0.17T + 722.77$	603.29	586.19	569.14
13	$\Delta G^{\theta} = -0.16T + 804.46$	689.63	673.18	656.81
14	$\Delta G^{\theta} = -0.18T + 662.38$	539.06	521.23	503.83
15	$\Delta G^{\theta} = -0.18T + 753.48$	629.96	612.17	594.68
16	$\Delta G^{\theta} = -0.17T + 772.45$	653.1	635.9	618.99
17	$\Delta G^{\theta} = -0.17T + 863.56$	744	726.84	709.84

表 1 TiO₂/SiO₂ 直接电解还原过程中可能发生的电极反应 ΔG⁶ 与温度 $T(700 \sim 900$ °C)的关系 Table 1 Relationships between ΔG⁶ and T during the direct electrolysis of TiO₂/SiO₂

表 2 电解反应在 700~900 ℃下的理论分解电压

Table 2 The decomposition voltage of the electrolytic reactions at $700 \sim 900$ °C

	reactions at 700	200 0		
Reaction	$E^{ heta}$	/V		
number	700~900 °C	700 °C	800 °C	900 °C
1	$E^{ heta} = rac{RT}{zF} \ln P_{\mathrm{O}_2}$	1.99	1.94	1.90
2	$E^ heta + rac{RT}{zF} { m ln} a_{{ m [CaO]}}$		_	
3	$E^{\theta} - rac{RT}{zF} \ln(a_{\text{[CaO]}} \cdot P_{\text{O}_2})$	2.21	2.17	2.12
4	$E^{ heta} = rac{RT}{zF} \ln P_{\mathrm{O}_2}$	1.9	1.86	1.82
5	$E^{ heta} + rac{RT}{zF} { m ln} a_{ extsf{CaO}}$		_	
6	$E^{\theta} - \frac{RT}{zF} \ln(a_{\text{[CaO]}} \bullet P_{\text{O}_2})$	2.14	2.1	2.05
10	$E^{ heta} = rac{RT}{zF} \ln P_{\mathrm{O}_2}$	1.68	1.64	1.59
11	$E^{\theta} - rac{RT}{zF} \ln(a_{\text{[CaO]}} \bullet P_{\text{O}_2})$	1.91	1.86	1.82
12	$E^{ heta} = rac{RT}{zF} \ln P_{\mathrm{O}_2}$	1.56	1.52	1.47
13	$E^{\theta} - rac{RT}{zF} \ln(a_{\text{[CaO]}} \cdot P_{\text{O}_2})$	1.79	1.74	1.7
14	$E^{ heta} - rac{RT}{zF} \ln P_{\mathrm{O}_2}$	1.4	1.35	1.3
15	$E^{\theta} - rac{RT}{zF} \ln(a_{\text{[CaO]}} \cdot P_{\text{O}_2})$	1.63	1.58	1.54
16	$E^{ heta} = rac{RT}{zF} \ln P_{\mathrm{O}_2}$	1.69	1.65	1.6
17	$E^{\theta} - rac{RT}{zF} \ln(a_{[CaO]} \cdot P_{O_2})$	1.93	1.88	1.84

 $\Delta G^{\boldsymbol{\theta}} \!=\! -zFE^{\boldsymbol{\theta}}$

(18)

式中, ΔG^{e} 一标准吉布斯自由能,kJ/mol;z—电 子化学计量数;F—法拉第常数,964 85 C/mol。值 得指出的是,电极反应 2、5 和 7~10 的标准吉布斯 自由能在 700~900 C内为负值,说明上述反应可自 发进行,不计算理论分解电压。另外,为方便计算 O^{2-} 在石墨阳极放电的理论电压值,在计算过程中 将溶解在熔盐中的 O^{2-} 以[CaO]形式表示。

由表 2 可知,各反应的分解电压随着温度的升 高而降低,当采用恒槽压电解时,分解电压的降低导 致各反应的驱动力增强,反应更容易正向进行,有利 于氧化物的电解还原。

2 结果与讨论

2.1 各反应吉布斯自由能对比分析

利用 Origin 软件对计算值进行线性拟合,得到 ΔG^{θ} 与温度 T 的关系,如图 1 所示。根据各反应的 直线位置关系,可以推测各反应电化学还原过程的 难易程度。在图 1 中位置靠下部分,反应的吉布斯 自由能较负,暗示了反应较易进行;在图中位置靠上 区域,反应较难以进行,需要施加一定的过电位,才 能实现氧化物的脱氧。在电解初期,主要发生的是 TiO₂、SiO₂ 的电解脱氧、CaTiO₃ 和 CaSiO₃ 的生成 及其后续电解过程。在图 2 中位置最高的反应组分 别为 CaTiO₃ 和 CaSiO₃ 的一步电解还原反应。上 述两个反应吉布斯自由能最大,而位置靠下的反应, 即由 TiO₂ 一步电解还原成单质 Ti,SiO₂ 还原成单质 Si,其吉布斯自由能较负,暗示了中间产物 CaTiO₃ 和 CaSiO₃ 的生成不利于 TiO₂ 和 SiO₂ 的直接电解脱氧,增加了反应的能耗。

在阴极电脱氧后期主要发生的是中间产物 CaTiO₃和CaSiO₃的电脱氧以及钛硅的合金化反 应。首先,当钛硅合金组分是 Ti₅Si₃ 时,反应 8、10、 11、14 和 15 的位置从低到高的顺序依次是:SiO2 在 金属 Ti 基础上电解脱氧并生成 Ti₅Si₃ 的反应, CaSiO₃ 在金属 Ti 存在情况下电脱氧合成 Ti₅Si₃ 的 反应, TiO2 在 Si 存在情况下得到 Ti₅Si₃ 的反应, CaTiO₃ 在 Si 基础上得到 Ti₅Si₃ 的反应,说明 SiO₂、 CaSiO₃在单质 Ti存在条件下更加容易电解脱氧并 生成 Ti₅Si₃ 合金。其次,当钛硅合金组分是 TiSi₂ 时,根据反应12、13、16和17的位置从低到高的顺 序依次是:TiO2 在单质 Si 基础上电脱氧得到 TiSi2 的反应,SiO2 在单质 Ti 存在情况下得到 TiSi2 的反 应,CaTiO3 电脱氧并直接和单质 Si 进行合金化反 应,以及 CaSiO₃ 电脱氧并和单质 Ti 进行合金化反 应,说明 TiO₂ 和 SiO₂ 分别在单质 Si 和 Ti 存在条 件下直接电解并合金化生成 TiSi2 的反应更易 进行。

图 1 TiO₂/SiO₂ 混合氧化物直接还原过程中可能发生 电极反应的 ΔG 随温度 T 变化图

Fig. 1 Changes of ΔG of the potential reactions with the temperature during the direct electrolysis of TiO₂/SiO₂

化物晶格中脱离的 O²⁻溶解在熔盐中,随后迁移至 惰性阳极进行放电。因此,O²⁻在熔盐中的传输对 于电极反应进度影响显著。为探明 O²⁻的活度对电 极反应分解电压的影响,假定表 2 中阳极气体 O₂ 的分压为 e⁻¹,在电解温度 800 ℃下,各反应的分解 电压与 a_[Ca0] 的关系见表 3。从表 3 可知,在给定条 件下,CaTiO₃、CaSiO₃的分解电压与 lna_[CaO]呈现出 线性关系:随着 lna_[Go]的增加,反应的分解电压降 低。TiO₂、SiO₂的电脱氧反应与 $\ln a_{\Gamma_{AOI}}$ 无关联性。 采用 Origin 作图,对比分析表 3 中的数据,如图 2 所示。结合图2中直线的位置关系,能够判断出各 反应分解电压的大小,进而推测出反应的先后顺序。 从图 2 中可以看出, SiO₂ 在金属 Ti 基础上电解还 原得到 Ti₅Si₃ 的反应分解电压最低,说明反应最容 易进行,且该反应分解电压在给定温度 800 ℃、Po,为 e⁻¹时为 1.373 V,其次是 TiO₂ 在单质 Si 基础上电脱 氧生成 TiSi2 的反应,分解电压为 1.543 V。上述反 应与 $a_{\Gamma_{CaOI}}$ 无关。图 2 中位置最高的是 CaTiO₃ 的 电解反应,以及 CaSiO₃ 的电解反应,说明 CaTiO₃ 和 CaSiO₃ 一步电解生成相应单质 Ti 和 Si 的反应 较难进行。相反,当 CaSiO3 在金属 Ti 基础上电解 生成 Ti₅Si₃ 的反应以及 CaTiO₃ 在 Si 存在条件下电 解生成 TiSi2 的反应位置较低,说明上述反应更易 进行。因此,CaSiO₃和CaTiO₃的电解路线分别为: CaSiO₃在电脱氧后与金属 Ti 直接反应,优先生成 Ti₅Si₃;CaTiO₃在电脱氧后与Si直接反应,优先生 成 TiSi2。

表 3 800 ℃、*P*₀₂为 e⁻¹条件下反应的 分解电压与 *a*_[Ca0]的关系

Table 3	Relationship	between	the	decomposition	voltage

and $a_{[CaO]}$ at 800 °C as the P_{O_2} is e^{-1}		
Reaction number	E/V	
1	1.963	
3	2.193-0.023lna _[CaO]	
4	1.883	
6	2.123-0.023lna _[CaO]	
10	1.663	
11	1.883-0.023lna _[CaO]	
12	1.543	
13	1.763-0.023lna _[CaO]	
14	1.373	
15	1.603-0.023 $\ln a_{[CaO]}$	
16	1.673	
17	1.903-0.023lna _[CaO]	

Ina_[CaO]关系图

Fig. 2 Relationship between the decomposition voltage and $\ln a_{[Ca0]}$ at 800 °C as the P_{0} , is e^{-1}

3 结论

1) 热力学计算分析结果表明, 熔盐中 TiO₂/SiO₂ 混合物以及中间产物 CaTiO₃ 和 CaSiO₃ 在直接电 解还原过程中的反应过程为:在电解初期,发生的反 应包括 TiO₂ 和 SiO₂ 的电解脱氧以及生成中间产物 CaTiO₃ 和 CaSiO₃,且 CaTiO₃ 和 CaSiO₃ 的生成在 热力学上自发进行;在电解后期,主要经历了中间产 物 CaTiO₃ 和 CaSiO₃ 的电脱氧以及钛硅的合金化 反应,且在金属 Ti 基础上 SiO₂ 电解还原生成 Ti₅Si₃ 的反应和 TiO₂ 在单质 Si 基础上电解还原生 成 TiSi₂ 的反应更容易进行。

2) 熔盐中 $a_{[CaO]}$ 的增大有利于降低 CaTiO₃ 和 CaSiO₃ 的分解电压,促进电解反应的正向进行。

3) CaTiO₃ 电解后与单质 Si 反应,优先生成 TiSi₂。CaSiO₃ 电解后与单质 Ti 反应,优先生 成 Ti₅Si₃。

参考文献:

- [1] CHEN G Z, FRAY D J, FARTHING T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407:361-364.
- [2] WENZ D A, JOHNSON I, WOLSON R D. CaCl₂-rich region of the CaCl₂-CaF₂-CaO system [J]. Journal of Chemical and Engineering Data, 1969, 14(2): 250-252.

- [3] FREIDINA E B, FRAY D J. Study of the ternary system CaCl₂-NaCl-CaO by DSC[J]. Thermochimica Acta,2000,356(1):97-100.
- [4] ABDELKADER A M, KILBY K T, COX A, et al. DC voltammetry of electro-deoxidation of solid oxides[J]. Chemical Reviews, 2013, 113(5):2863-2886.
- [5] CAI J, LUO X T, LU C H, et al. Purification of metallurgical grade silicon by electro refining in molten salts[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 3103-3107.
- [6] 周忠仁,张英杰,华一新,等.熔盐电解法制备硅纳米线 及其生长过程研究[J].有色金属(冶炼部分),2020(3): 28-31.

ZHOU Zhongren,ZHANG Yingjie,HUA Yixin, et al. Study on the micro-structural growth of silicon nanowire prepared by molten salt electrolysis [J]. Nonferrous Metals (Extractive Metallurgy),2020(3): 28-31.

[7] 周忠仁,张英杰,华一新,等. CaCl₂-NaCl 熔盐对电解 SiO₂ 制备 Si 纳米线的影响[J]. 有色金属(冶炼部分), 2019(11):70-74.

ZHOU Zhongren, ZHANG Yingjie, HUA Yixin, et al. Study on the influence of CaCl₂-NaCl molten salt on the preparation of silicon nanowire via the electrolysis of SiO₂ [J]. Nonferrous Metals (Extractive Metallurgy), 2019(11):70-74.

- [8] MOHANDAS K S, FRAY D J. Electrochemical deoxidation of solid zirconium dioxide in molten calcium chloride[J]. Metallurgical and Materials Transactions B,2009,40(5):685-99.
- [9] ZHOU Z R, HUA Y X, XU C Y, et al. Synthesis of micro-FeTi powders by direct electrochemical reduction of ilmenite in CaCl₂-NaCl molten salt[J]. Ionics, 2017, 23(1):213-221.
- [10] ZHU H, SADOWAY D R. Synthesis of nanoscale particles of Ta and Nb₃ Al by homogeneous reduction in liquid ammonia[J]. Journal of Materials Research, 2011,16(9):2544-2549.
- [11] 周忠仁,张英杰,华一新,等. 熔盐电解 SiO₂/TiO₂ 制备 硅钛合金的研究[J]. 有色金属(冶炼部分),2020(1): 36-39.

ZHOU Zhongren, ZHANG Yingjie, HUA Yixin, et al. Study on the electrochemical preparation of silicontitanium alloy from SiO₂/TiO₂ in molten salt[J]. Nonferrous Metals (Extractive Metallurgy), 2020(1): 36-39.

[12] ZOU X, LU X, ZHOU Z, et al. Electrochemical extraction of Ti_5Si_3 silicide from multicomponent

Ti/Si-containing metal oxide compounds in molten salt[J]. Journal of Materials Chemistry A, 2014, 2 (20): 7421-7430.

[13] SCHWANDT C, ALEXANDER D T L, FRAY D J. The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control[J]. Electrochimica Acta, 2009, 54 (14):

(上接第 50 页, Continued from P50)

WANG Heng, LI Yubiao, LI Zhiming, et al. Kinetics and mechanisms of molybdenite oxidation and leaching by sodium chlorite [J]. Multipurpose Utilization of Mineral Resources, 2019(4):145-148.

[16] 刘志雄. 氨性溶液中含铜矿物浸出动力学及氧化铜/锌 矿浸出工艺研究[D]. 长沙:中南大学,2012.
LIU Zhixiong. Study on the leaching kinetics of copper ores and the leaching of oxidized copper/zinc ores in the ammoniacal solution [D]. Changsha: Central South University,2012. 3819-3829.

ferrotitanium alloys by the electrolysis of ilmenite in molten salt [D]. Kunming: Kunming University of Science and Technology,2016.

- [17] ROY S, SARKAR S, DATTA A, et al. Importance of mineralogy and reaction kinetics for selecting leaching methods of copper from copper smelter slag[J].
 Separation Science and Technology, 2016, 51 (1): 135-146.
- [18] 王瑞祥,赵鑫,李棉,等. 铜冶炼炉渣浮选尾矿的硫酸浸出及动力学研究[J]. 金属矿山,2017(12):189-193.
 WANG Ruixiang, ZHAO Xin, LI Mian, et al. Sulfuric acid leaching and kinetics of flotation tailings from copper smelting slag[J]. Metal Mine,2017(12):189-193.

^[14] 周忠仁.熔盐电解还原钛铁矿制备钛铁合金的研究[D].昆明:昆明理工大学,2016.ZHOU Zhongren. Study on the preparation of