文章编号:1673-9981(2016)01-0053-04

人工海水冲刷时间对 B10 管电化学性能影响的研究*

李晓孟1,2,国秀花1,2,3,张彦敏1,2,3,宋克兴1,2,3,张素霞1,2

1.河南科技大学材料科学与工程学院,河南 洛阳 471023;2.河南省有色金属材料科学与加工技术重点实验室,河南 洛阳 471023;
 3. 有色金属共性技术河南省协同创新中心,河南 洛阳 471023

摘 要:利用自行设计的循环冲刷试验机,以人工配置海水为介质,对 B10 铜镍合金管材 Φ57×2.5 mm 进行冲刷腐蚀试验.结果表明,随冲刷时间延长,开路电位正移,在冲刷 192 h 时达到 0.08 V;腐蚀电流 密度降低,腐蚀电位升高,在 192 h 时分别为 9.060×10⁻⁶ A • cm⁻²和 0.039 V;阻抗谱高频区和低频区 的容抗弧半径增大,电荷转移电阻和膜层电阻分别达到 1764 Ω • cm²和 232.1 Ω • cm². 说明在海水的冲 刷过程中,B10 铜镍合金管的耐蚀性增强. 关键词:B10 管材;人工海水;电化学;性能

中图分类号:TQ174.75 文献标识码:A

铜镍合金不仅具有优良的导电导热性能、较好的强度、塑形以及加工性能,而且具有极好的耐海水腐蚀和生物污损性能.因此,在造船业、滨海发电和海水淡化等海洋工程的管路系统中得以广泛应用, 是国内外公认的耐海水腐蚀的性能优良的合金^[1-4]. B10 作为管道材料在海洋工程中应用最多,因此,对 B10 管材直接进行冲刷研究具有重要意义.本研究 通过自行设计的冲刷装置,对 B10 管材进行冲刷实验,研究其在人工海水介质中电化学性能的变化.

1 实验方法

试验材料为 B10 铜镍合金管材 Φ57×2.5mm, 试验介质为人工配置海水,其成分列于表 1.

表 1 人工海水药品成分

lable I ingredients of artificial seawate	Table 1	Ingredients	of	artificial	seawate
---	---------	-------------	----	------------	---------

成分	NaCl	$MgCl_2$	$NaSO_4$	CaCl_2	KCl	NaHCO ₃	KBr	$\mathrm{H}_3 \operatorname{BO}_3$	SrCl_2	NaF
含量/(g・L ⁻¹)	24.53	5.2	4.09	1.16	0.695	0.201	0.101	0.027	0.025	0.003

将 Φ57×2.5mm 管材加工成长 22 mm 管段用 于冲刷试验,室温下海水流速 3.0 m/s. 冲刷试验后 通过线切割在其内表面取 1 cm²试样,进行电化学 测试.

采用 CHI660D 型电化学工作站进行电化学测试,测试温度为室温,测试体系为三电极体系,其中

辅助电极为石墨电极,参比电极为饱和甘汞电极 (SCE).开路电位的测试时间为 500 s,在开路电位 下测量电化学阻抗谱,激励电压为 5 mV,频率范围 为 $10^{-1} \sim 10^{5}$ Hz.使用 ZSimpWin 软件进行电化学 阻抗谱的分析,极化曲线扫描速率为 5 mV/s^[5].

收稿日期:2015-11-17

^{*}基金项目:河南省高校科技创新团队(14IRTSTHN007);河南省杰出人才项目(134200510011)

作者简介:李晓孟(1991-),男,河南省洛阳人,硕士研究生.

通讯作者:张彦敏(1970-),女,河南省洛阳人,教授.

2 结果与分析

2.1 开路电位

室温下管子在人工海水中冲刷不同时间后开路 电位如图 1 所示.由图 1 可知,随冲刷时间延长,开 路电位不断正移,在冲刷 192 h时达到 0.08 V.开路 电位反映了合金活化能力的大小,开路电位正移,说 明合金在人工海水中的腐蚀倾向降低.在海水中铜 镍合金表面会形成一层钝化膜,随着时间增加,钝化 膜不断生长,其致密性会增加,使钝化膜对基体的保 护作用增强^[6].

2.2 极化曲线

图 2 为人工海水中不同冲刷时间后管材的动电 位极化曲线.通过极化曲线获得的腐蚀电流密度和 腐蚀电位列于表 2.由图 2 和表 2 可知,随冲刷时间 增加,腐蚀电流密度减小,腐蚀电位不断正移,说明 管材的耐蚀性提高.在海水的冲刷过程中,B10 管表 面的钝化膜随时间延长致密性提高,表面传质和电 荷转移电阻增大,对基体的保护作用增强,使腐蚀作 用减弱^[7].

2.3 交流阻抗谱

图 3(a)为不同冲刷时间后管材的电化学交流 阻抗谱.从图 3(a)可看出,随着冲刷时间延长,高频 区和低频区的容抗弧半径增大,在冲刷 98 h 和 192 h 时增加幅度比较显著.通常认为,在交流阻抗谱 中,高频区容抗弧反映表面电荷转移反应,而低频区 容抗弧反映电荷或物质通过表面腐蚀产物膜层的传 输过程,半径越大则相应的阻值越大^[8-9].随着冲刷

Fig. 2 The potentiodynamic polarization curves ofpipes after erosion-corrosion in artificial seawater with different times

表 2 人工海水中冲刷不同时间后 B10 管材的腐蚀电流密 度和自腐蚀电位

Table 2 I_{corr} and E_{corr} values of B10 pipes after erosioncorrosion in artificial seawater with different times

冲刷时间/h	自腐蚀电位/V	腐蚀电流密度 /(A・cm ⁻²)
12	-0.246	21.54 $\times 10^{-6}$
24	-0.244	20.83 $\times 10^{-6}$
48	-0.202	19.66 $\times 10^{-6}$
96	-0.022	15.65×10^{-6}
192	0.039	9.060×10^{-6}

时间延长,管子表面形成的钝化膜不断成长,尤其是 后期已经趋于成熟,致密性比前期有很大提高,管子 表面与腐蚀介质间的电荷或物质传输以及腐蚀产物 膜层电阻都不断增大.

图 3(b)为管材在人工海水中不同冲刷时间后相应的等效电路. *R*₅为溶液电阻, *R*_f表示钝化膜的膜层电阻, *R*_t表示电荷转移电阻, *Q*₁和 *Q*₂表示电容^[10].

根据等效电路通过 Zsimpwin 软件对不同冲刷 时间得到的阻抗谱进行拟合,拟合结果列于表 3(*n* 值代表Q与电容的相似度).通常 *R*_i表示在自腐蚀 电位下,电荷穿过电极和溶液两相界面过程的难易 程度;*R*_i表示腐蚀反应物质通过表面氧化物膜的难

图 3 人工海水中不同冲刷时间后 B10 管材的交流阻抗谱(a)和等效电路图(b)

表 3 人工海水中冲刷不同时间后 B10 管材电化学阻抗拟合值

Table 3 Parameters of equivalent elements in equivalent circuit forB10 pipes after erosion-corrosion in artificial seawater with different times

冲刷时间/h	$R_{\rm s}/(\Omega \cdot {\rm cm}^2)$	$Q_1/(\Omega^{-1} \cdot \mathrm{cm}^2 \cdot \mathrm{s}^{-1})$	n_1	$R_{\rm f}/(\Omega \cdot { m cm}^2)$	$Q_2/(\Omega^{-1} \cdot \mathrm{cm}^2 \cdot \mathrm{s}^{-1})$	n_2	$R_{\rm t}/(\Omega \cdot {\rm cm}^2)$
12	4.194	1.308×10^{-5}	1.00	5.375	5.595 $\times 10^{-4}$	0.6322	1204
24	4.605	3.103 $\times 10^{-5}$	0.915	11.34	4.622 $ imes$ 10 ⁻⁴	0.6432	1184
48	7.25	13.07×10^{-5}	0.7531	32.27	1.052×10^{-4}	0.7051	1008
96	5.74	24.13 $\times 10^{-5}$	0.719	119.5	2.578 $\times 10^{-17}$	0.7143	1251
192	8.007	25.29×10^{-5}	0.627	232.1	0.3009×10^{-4}	0.7649	1764

易程度^[10-11].由表 3 可知,随着冲刷时间延长, R_i 和 R_f 都在增大;在冲刷 192 h时, R_i 和 R_f 分别达到 1764 $\Omega \cdot \text{cm}^2$ 和 232.1 $\Omega \cdot \text{cm}^2$.说明在海水冲刷腐 蚀中电荷通过管子表面钝化膜的阻力很大,使管材 的耐腐蚀性提高.

3 结 论

在人工海水介质中随冲刷时间延长,开路电位 正移,在192h时达到0.08V;腐蚀电流密度降低, 腐蚀电位升高,在192h时分别为9.060×10⁻⁶A• cm⁻²和0.039V;阻抗谱高频区和低频区的容抗弧 半径增大,电荷转移电阻和膜层电阻分别达到1764 Ω • cm²和232.1 Ω • cm².在海水冲刷腐蚀的过程 中,表面传质和电荷转移电阻增大,管材的耐腐蚀性 增强.

参考文献:

- [1] 朱小龙,李中建,徐杰.Cu-Ni 合金海水腐蚀产物膜的形成与破裂机制研究进展[J].稀有金属,1997(6):64-69.
- [2] 朱小龙,林乐耘,徐杰,等. Cu-Ni 合金海水蚀产物膜研究 进展[J]. 材料科学与工艺, 1997, 5(2): 24-27.
- [3] 陈海燕,朱有兰. B10 铜镍合金在 NaCl 溶液中腐蚀行为 的研究[J]. 腐蚀与防护,2006,27(8):404-407.
- [4] 杜娟. TUP 紫铜及 B10 铜镍合金流动海水冲刷腐蚀行 为研究[D]. 青岛:中国海洋大学,2007.
- [5] 杜娟,王洪仁,杜敏,等. B10 铜镍合金流动海水冲刷腐蚀 电化学行为[J]. 腐蚀科学与防护技术,2008,20(1): 12-18.
- [6] 徐群杰,黄诗俊. 铜镍合金耐蚀性影响的研究进展[J]. 上海电力学院学报,2007(2): 157-162.
- [7] 林乐耘,徐杰,赵月红. 国产 B10 铜镍合金海水腐蚀行为 研究[J]. 中国腐蚀与防护学报,2006(6):361-367.
- [8] MACDONALD D D.SYRETT B C.WING S S. Methods for measuring corrosion rates of copper nickel alloys in flowing seawater[J]. Corrosion, 1978, 28: 25.
- [9] EFIRD K D. Flow-Induced Corrosion[M]. USA: Uhlig's

Corrosion Handbook Publishment,2000:233-248. [10] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:46-51. [11] 迟长云. B30 铜镍合金在海水中的腐蚀电化学性能研 究[D]. 南京:南京航空航天大学,2009.

Effects of erosion time on the electrochemical performance of B10 pipe in artificial seawater

LI Xiaomeng^{1,2}, GUO Xiuhua^{1,2,3}, ZHANG Yanmin^{1,2,3}, SONG Kexing^{1,2,3}, ZHANG Suxia^{1,2}

1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China; 2. Henan Key Laboratory of Advanced Non-ferrous Metals, Luoyang 471023, China; 3. Henan Collaborative Innovation Center of Non-ferrous Metal Generic Technology, Luoyang 471023, China

Abstract: Using self-designed circulation scouring machine, with water as a medium, manual configuration of B10 copper nickel alloy tube $\Phi 57 \times 2.5$ mm erosion experiment was carried out. The results show that with the increase of scouring time, open circuit potential is moved upward, in flushing 192 h is 0.08 V. Reduce the corrosion current density and corrosion potential rise, at the time of 192 h were 9.060×10^{-6} $A \cdot cm^{-2}$ and 0.039 V. Impedance spectrum of high frequency area and frequency area capacitive reactance arc radius increases, the charge transfer resistance and membrane layer resistance, 1764 $\Omega \cdot cm^2$ and 232.1 $\Omega \cdot cm^2$, respectively. That is to say, in the process of seawater erosion, B10 copper corrosion resistance of nickel alloy tube does not drop.

Key words: B10 pipe; artificial seawater; electrochemical; performance