DOI:10.3880/j.issn.1006-7647.2012.03.007

膨胀土湿胀干缩特性试验

吴 华¹ 袁俊平^{2,3} 杨 松⁴ ,丁国权^{2,3}

(1.南昌航空大学土木建筑学院 江西 南昌 330063;2.河海大学岩土力学与堤坝工程教育部重点实验室 江苏 南京 210098;
 3.河海大学岩土工程科学研究所,江苏 南京 210098;4.云南农业大学水利水电与建筑学院,云南 昆明 650201)

摘要:为研究膨胀土湿胀干缩变形与含水率变化的一般规律,采用压缩仪和收缩仪对重塑膨胀土进 行了无荷载条件下的分级浸水膨胀试验和收缩试验。结果表明:试样的初始干密度越大,初始含水 率越小,土体的膨胀系数越大,最终膨胀率也越大;初始干密度越大,初始含水率越小,土体的收缩 系数越小,最终线缩率和体缩率也越小,膨胀系数和收缩系数反映了膨胀土受含水率变化而产生变 形的特性,可作为评判膨胀土胀缩性能的指标。

关键词 膨胀土 胀缩变形 分级增湿 膨胀系数 收缩系数

中图分类号:TU443 文献标志码:A 文章编号:1006-7647(2012)03-0028-04

Experimental study on swell-shrink performance of expansive soil//WU Jun-hua¹, YUAN Jun-ping^{2,3}, YANG Song⁴, DING Guo-quan² (²) (1. College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 3. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 4. College of Hydraulic and Architectural Engineering, Yunnan Agricultural University, Kunming 650201, China)

Abstract : The swell-shrink deformation of expansive soils results from the moisture change , and it is the main internal cause of crack propagation. In this study , the swelling deformation of remolded expansive soils under inundated conditions with different stages of the compression apparatus , and the shrinking deformation of remolded expansive soils under inundated conditions with different stages of the compression apparatus , and the shrinking deformation of remolded expansive soils with the shrink apparatus were tested without loads. Several relationships between the swell-shrink deformation and the moisture change were determined :the expansion coefficient and final expansion ratio have a positive correlation with initial dry density and a negative correlation with initial water content ; the shrink coefficient and final linear and volume shrinkage ratio have a negative correlation with initial dry density and a positive correlation with initial water content ; and the expansive coefficient and shrink coefficient reflect the deformation characteristics of expansive soils due to the moisture change and can be used as an index to judge the swell-shrink performance of expansive soils.

Key words : expansive soil ; swell-shrink deformation ; wetting in stages ; expansion coefficient ; shrink coefficient

膨胀土中的矿物成分主要包含蒙脱石和伊利石 等强亲水性矿物,具有强烈的湿胀干缩特性,在干湿 循环作用下反复的胀缩变形,导致土体结构松散,裂 隙发育,工程性能差。可以看出,裂隙的生成与含水 率的变化有关,含水率的变化使得膨胀土产生胀缩 变形,而反复的不均匀胀缩变形即导致裂隙的不断 发育^[1-3]。

不少学者对膨胀土的膨胀和收缩变形性能进行 了试验研究,得出了膨胀土的膨胀和收缩变形主要 与试样的初始干密度、含水率及上覆压力等有关的 结论^[4-11]。Holtz 等^[4-]利用单向浸水变形试验确定了 加卸载过程中膨胀土的变形规律。袁俊平等^[5]利用 常规压缩仪进行了不同初始条件下的单向浸水膨胀 试验,总结了膨胀土浸水膨胀时程特性。李振等^[6] 利用压缩仪对膨胀土分别进行了一次浸水膨胀和分 级浸水膨胀试验,同时测定了试样在浸水前后不同 压力下膨胀量的变化过程。缪林昌^[7]研究了击实性 膨胀土在不同压力作用下,膨胀变形与初始含水率 和干密度的关系。徐永福等^[8]通过膨胀试验得到宁 夏膨胀土的膨胀变形与初始含水率、干密度及上覆 压力的相关规律。姚海林^[9]通过三相收缩试验和现 场静力触探试验,确定了广西膨胀土的体积收缩指

基金项目:国家自然科学基金(51008117);河海大学创新基金(2010B04214,B09020281);江西省交通科学研究院委托项目(2011-11-056) 作者简介:吴盇华(1985—),男,江西吉安人,讲师,博士,主要从事膨胀土性质及边坡稳定研究。E-mail:wjh0796@163.com

数及膨胀土活动区深度,并在试验基础上给出了膨 胀土地基变形计算模式和裂隙开展深度的理论解。 张华^{10]}通过收缩试验结果间接估算了压力板试验 中试样的真实体积,从而得到能够更符合实际膨胀 土的土水特征曲线。肖宏彬^{11]}通过室内单向膨胀 和收缩试验,对膨胀土的线胀率和线缩率的时程性 进行了研究。

许多学者对膨胀土的膨胀和收缩时程特性进行 了大量细致的研究^{10-12]},而对膨胀土在膨胀和收缩 过程中变形与含水率的变化规律研究较少。实际工 程中,膨胀土何时开始浸水膨胀和失水收缩、历时多 少等均难以知晓。此外,不同干湿循环次数下膨胀 土的胀缩变形也不一样,即膨胀土的胀缩变形具有 不可逆性^{12]}。本文利用常规压缩仪和收缩仪分别 进行了膨胀土的膨胀和收缩试验,获得了影响膨胀 土胀缩性能的一般规律和主要因素,为深入研究膨 胀土的胀缩性能提供了试验基础。

1 试验方案

土样取自南水北调中线一期工程总干渠膨胀岩 (土)试验段工程(潞王坟段),基本参数为:液限 42.7%,塑限 19.2%,塑性指数 24,自由膨胀率 57.5%,最大干密度1.81 g/cm³,相对密度2.74。试 验方案见表1,分别进行了不同初始含水率、初始干 密度试样的膨胀与收缩试验。收缩试验采用常规收 缩仪进行,具体操作可参照 GB/T 50123—1999《土工 试验标准》。分级浸水膨胀试验的目的是获得某次 加水量所产生的膨胀变形,因此在试验仪器和操作 上有所不同。

表1 诋验	万	系

	分级浸水膨胀	长试验		收缩试验	<u>م</u>
试样 编号	初始 含水率/%	初始干密度/ (g·cm ⁻³)	试样 编号	初始 含水率/%	初始干密度/ (g·cm ⁻³)
b1	5.61	1.80	c1	23.14	1.79
b2	5.65	1.70	c2	23.14	1.69
b3	5.56	1.63	c3	23.39	1.62
b4	5.66	1.52	c4	23.58	1.52
b5	8.05	1.80	c5	19.70	1.77
b6	8.03	1.69	c6	19.42	1.67
b7	8.01	1.60	c7	19.21	1.58
$\mathbf{b8}$	13.74	1.80	c8	12.63	1.78
b9	13.77	1.70	c9	12.40	1.69
b10	13.78	1.63	c10	12.67	1.59

为了防止透水石与试样水分交换,采用与透水 石规格相同的有机玻璃板来代替透水石。底板沿厚 度方向开若干小圆孔,直径1mm,便于试验过程中 试样孔隙气的排出;顶板沿厚度方向开4个小圆孔, 呈对称十字状分布,圆孔直径2mm,便于试验过程 中往试样中注水(图1)。试验中,每隔一段时间往 顶板圆孔中注水,每圆孔加水0.5mL,待水分完全进 入试样后立即用薄塑料片盖住圆孔,防止水分蒸发。 待此级膨胀变形稳定后再进行下一级加水。为防止 试样中的土颗粒堵塞圆孔,分别在底板、顶板与试样 的接触位置放置直径相同的滤纸,并在放置前先称 量滤纸的质量。试验的稳定标准为24h内变形不超 过0.01mm。试验结束后分别测量两张滤纸和试样 的最终质量,以确定试样的最终含水率。

图 1 有机玻璃板底板和顶板示意图

2 试样制备

试样采用标准的环刀制样(直径 61.8 mm ,厚度 20 mm),主要制备步骤如下:

a. 将碾碎风干的土样过 2 mm 筛,充分拌匀。 取 3 份土样烘干测定其天然含水率。

b.将试样均匀地铺在调土盆里,根据试验要求的含水率和已测得的天然含水率确定所需水量,将水均匀洒入土中并充分搅拌直至颜色均匀且无大团粒出现为止。将配好的土样用密封塑料袋装好,静置于保湿箱内24h以上以保证土样中水分均匀。

c. 根据实际试样含水率和设计的干密度计算 所需土样质量并准确称量。

d. 将两环刀内侧涂抹薄层凡士林,背靠背地放 置于较大的平整金属垫块上,将称好的土样均匀地 置于环刀内。在上部环刀中放入与环刀内径相同、高 度相同的硬质金属垫块,用螺旋式千斤顶均匀地将金 属垫块压入环刀内直至不能再压入为止。此时下部 环刀所制试样的干密度即为试验所要求的干密度。

3 参数定义

试样吸水所产生的变形量与试样初始高度之比 的百分数称为膨胀率,计算公式为

$$\delta_{\rm p} = \frac{z_{\rm p} - z_0}{h_0} \times 100\%$$
 (1)

式中 : ∂_p 为试样膨胀率 ; h_0 为试样初始高度 ,mm ; z_p 为某级增湿变形稳定后的百分表读数 ,mm ; z_0 为百 分表初始读数 ,mm。令 Δw_p 为某级增湿变形稳定 后试样的含水率与初始含水率之差,以 Δw_{p} 作为横 轴,该时刻的膨胀率作为纵轴绘制曲线。根据膨胀 系数的定义,此时曲线的斜率等于膨胀系数 α_n 的 100 倍 即有 $\alpha_{\rm p} = 0.01 d\delta_{\rm p}/d\Delta w_{\rm p}$)

试样失水收缩的竖向变形量与试样初始高度之 比的百分数称为线缩率 计算公式为

$$\delta_{\rm s} = \frac{z_{\rm s} - z_0}{h_0} \times 100\%$$
 (2)

式中: 🖧 为试样线缩率; z 为某含水率下的百分表 读数 mm。令 Δw_s 为收缩试验某时刻的含水率与初 始含水率之差,以 Δw_s 作为横轴,该时刻的线缩率 作为纵轴绘制曲线。研究表明,曲线的初始阶段可 近似为线性^{10]}。根据收缩系数 α_s 的定义,此时曲 线较陡,曲线的斜率等于收缩系数的100倍,即有 $\alpha_s = 0.01 d\delta_s / d\Delta w_s$

试验结果与分析

4.1 分级浸水膨胀试验

试样

编号

b1

b2

b3

b4

b5

9

8

7

6

4

3

2

1 0

 $\delta_p/\%$ 5 最终

膨胀率/%

7.595

7.385

7.065

6.235

6.770

bl

b2

h3

5

10

15

 $\Delta w_{\rm p} / \%$

(a)试样b1~b4

20

图 2 为试样分级浸水膨胀试验结果。可以看 出 不同初始干密度下 在低于某含水率值之前 △w 与膨胀率均呈现出良好的线性关系。当含水率不变 时,土体不产生膨胀变形,可采用式(3)对图2中的 曲线进行拟合,具体结果见表2。初始干密度越小, 初始含水率越大,自由膨胀率越小,试样的膨胀系数 和最终膨胀率越小,试样的浸水膨胀变形性能越不 明显。试样的初始干密度越大 膨胀系数越大 最终 膨胀率也越大 曲线出现拐点所对应的含水率值越 小,即曲线越容易出现拐点。这是因为体积一定的

> 分级浸水膨胀曲线拟合结果 表 2

> > 试样

编号

 $\mathbf{b6}$

b7

b8

b9

b10

最终

膨胀率/%

6.460

5.730

2.455

1.605

0.765

6

5

3

2

1

0

 $\delta_{p\,/0\!/0}$ 4

25

膨胀

系数 α_p

0.0036

0.0029

0.0019

0.0011

0.0005

b5

b6

膨胀

系数 α.

0.0056

0.0050

0.0046

0.0042

0.0042

情况下	,初始干密度大的孔隙比小 ,试样所	能吸	收的
水分少	,故当吸水量相同时 ,干密度大的词	祥,	其膨
胀变形	过程达到稳定所需的时间就少。		

$$\delta_{\rm p} = \alpha_{\rm p} \Delta w_{\rm p} \times 100\% \tag{3}$$

通过观察不难发现,土体的膨胀系数 α_{p} 与初始 含水率 w_0 、初始干密度 $ho_{
m d}$ 呈线性关系 ,可采用式 (4)进行拟合。

$$\alpha_{\rm p} = a_1 + b_1 w_0 + c_1 \rho_{\rm d} \tag{4}$$

式中:*a*₁,*b*₁和*c*₁为拟合参数。采用多元线性回 归,可得 $a_1 = -0.216$, $b_1 = -0.048$, $c_1 = 0.574$ 。 式(4)可用来定量描述膨胀系数 α_n 。

4.2 收缩试验

图 3 为不同初始状态下含水率差与线缩率的关 系。含水率差与线缩率的关系曲线可以近似分为 3 个阶段:初始线性段、中期过渡段和后期线性段,其 中第1阶段称为快速收缩阶段,第3阶段称为稳定 收缩阶段 这与已有试验成果相一致^{10,12}]。不同条 件下的快速收缩阶段和稳定收缩阶段的线性拟合表 达式列于表 3 中。从图 3 和表 3 可以看出,初始干密 度越大 初始含水率越小 则初始曲线斜率越小 收缩 系数越小 最终线缩率和体缩率也越小 曲线出现拐 点所对应的含水率越小。由土力学原理可知,试样体 积一定时,初始干密度大的孔隙比小,试样本身所含 的初始水分少 因此能够丧失的水分也少 试样收缩 变形的能力也小 试样较早地进入稳定收缩阶段。

表 3 收缩试验线性段拟合结果

试样编号	快速收缩阶段	稳定收缩阶段
c1	$\delta_{\rm s} = 0.22 \Delta w_{\rm s}$	$\delta_{\rm s}=0.017 \Delta w_{\rm s}+2.456$
c2	$\delta_{\rm s} = 0.25 \Delta w_{\rm s}$	$\delta_{\rm s}=0.022 \Delta w_{\rm s}+3.119$
c3	$\delta_{\rm s} = 0.27 \Delta w_{\rm s}$	$\delta_{\rm s}=0.004 \Delta w_{\rm s}+3.632$
c4	$\delta_{\rm s} = 0.22 \Delta w_{\rm s}$	$\delta_{\rm s} = 0.040 \Delta w_{\rm s} + 3.114$
c5	$\delta_{\rm s} = 0.18 \Delta w_{\rm s}$	$\delta_{\rm s}=0.018 \Delta w_{\rm s}+2.049$
c6	$\delta_{\rm s} = 0.21 \Delta w_{\rm s}$	$\delta_{\rm s} = 0.051 \Delta w_{\rm s} + 2.112$
с7	$\delta_{\rm s} = 0.22 \Delta w_{\rm s}$	$\delta_{\rm s}=0.075 \Delta w_{\rm s}+1.926$
c8	$\delta_{\rm s} = 0.11 \Delta w_{\rm s}$	$\delta_{\rm s}=0.009 \Delta w_{\rm s}+0.868$
с9	$\delta_{\rm s} = 0.19 \Delta w_{\rm s}$	$\delta_{\rm s}=0.019\Delta w_{\rm s}+0.831$
c10	$\delta_{\rm s} = 0.12 \Delta w_{\rm s}$	$\delta_{\rm s}=0.014 \Delta w_{\rm s}+0.942$

不同初始状态下的分级浸水膨胀曲线 图 2

 $\Delta w_p / \%$

(b)试样 b5~b7

10

15

20

5

当含水率不变时,土体不产生收缩变形。根据 收缩系数的定义,对含水率差与线缩率关系曲线中 的快速收缩阶段采用式(5)进行拟合:

$$\delta_{\rm s} = \alpha_{\rm s} \Delta w_{\rm s} \times 100\% \tag{5}$$

拟合结果见表 4。可以看出,随着初始干密度的增加及含水率的降低,最终线缩率和收缩系数逐渐减小,土体收缩性能逐渐变弱。根据图 3 的试验结果可以看出,土体的收缩系数 α_s 与初始含水率 w_0 、初始干密度 ρ_d 亦呈线性关系,可采用式(6)进行拟合:

 $\alpha_{\rm s} = a_2 + b_2 w_0 + c_2 \rho_{\rm d} \tag{6}$

式中 : a_2 , b_2 和 c_2 为拟合参数。进行多元线性回 归,得 a_2 =0.241, b_2 =0.012, c_2 =-0.164。式 6)可 用来定量描述收缩系数 a_{so}

<u>кт клаш-хлан-ил</u>

试样编号	最终线缩率/%	收缩系数 α_s
cl	2.824	0.0022
c2	3.376	0.0025
c3	3.724	0.0027
c4	3.944	0.0028
с5	2.391	0.0018
c6	3.055	0.0021
с7	3.279	0.0022
c8	0.975	0.0011
с9	1.050	0.0019
c10	1.116	0.0012

5 结 论

a. 将常规压缩仪进行改进,进行了无荷载条件 下的膨胀土分级增湿膨胀试验。在低于某含水率值 之前,膨胀系数与初始干密度、含水率呈现良好的线 性关系。初始干密度越大,初始含水率越小,土体的 膨胀系数越大,最终膨胀率也越大;当土体含水率超 过某值时,含水率的继续增加不会显著地增加土体 的膨胀变形,膨胀变形趋于稳定。可采用多元线性 关系式描述膨胀系数与初始含水率、初始干密度之 间的关系。

b. 进行了无荷载条件下的膨胀土收缩试验。 含水率差与线缩率的关系曲线可分为 3 个阶段 :初 始线性段、中期过渡段和后期线性段。初始干密度 越大,初始含水率越小,土体的收缩系数越小,最终 线缩率也越小,可采用多元线性关系式描述收缩系 数与初始含水率、初始干密度之间的关系。

参考文献:

- [1] 龚永康 陈亮,武广繁.膨胀土裂隙电导特性J].河海大
 学学报:自然科学版 2009 37(3) 323-326.
- [2]缪林昌,刘松玉.论膨胀土的工程特性及工程措施[J]. 水利水电科技进展 2001 21(2) 37-40.
- [3]袁俊平.非饱和膨胀土的裂隙概化模型与边坡稳定研 究 D].南京 河海大学 2003.
- [4] HOLTZ W G ,GIBBS J H. Engineering properties of expansive clays J]. Transact ,ASCE ,1956 ,121 '641-677.
- [5]袁俊平,陈剑.膨胀土单向浸水膨胀时程特性试验与应用研究J].河海大学学报:自然科学版 2003 31(5)547 -551.
- [6]李振,邢义川,张爱军.膨胀土的浸水变形特性J].水利 学报,2005,36(11):1385-1391.
- [7]缪林昌.非饱和膨胀土变形规律的试验研究J].大坝观 测与土工测试,1999 23(3) 36-39.
- [8]徐永福,龚友平,殷宗泽.宁夏膨胀土膨胀变形特征的 试验研究J].水利学报,1997(9)27-30.
- [9] 姚海林.基于收缩试验的膨胀土地基变形预测方法[J]. 岩土力学 2004 25(11):1688-1692.
- [10] 张华. 用收缩试验资料间接估算压力板试验中的体积 含水量[J]. 岩土力学, 1999 20(2) 22-26.
- [11] 肖宏彬.南宁膨胀土变形时程性研究J].铁道科学与工 程学报 2005 (16):47-52.
- [12]杨和平,张锐,郑健龙.有荷条件下膨胀土的干湿循环 胀缩变形及强度变化规律[J].岩土工程学报,2006,28 (11):1936-1941.

(收稿日期 2011-09-22 编辑:熊水斌)