环形 UV 消毒器流场模拟及湍流模型的研究

薛娇,邓保庆

(上海理工大学环境科学与工程系,上海 200093)

摘 要:为了预测紫外反应器的流场特性,利用 CFD 技术,分别采用标准 $k - \varepsilon$ 模型、Realizable $k - \varepsilon$ 模型、低雷诺 $k - \varepsilon$ 模型和雷诺应力模型(RSM)进行了水力特性的模拟。结果表明:在 x = 0, z = 1 cm 以及 x = 0, z = 83 cm 处,4 种湍流模型对 z 向流速的模拟结果都较符合 PIV 实验数据,在 x = 0, z = 15 cm 处,Realizable $k - \varepsilon$ 模型的模拟结果 偏差较大,在 x = 0, z = 64 cm 处,标准 $k - \varepsilon$ 模型的模拟偏差较其他 3 种模型大。综合比较,低雷诺 $k - \varepsilon$ 模型和 RSM 模型的模拟结果较为理想。

关键词: UV 消毒器; CFD; 湍流模型; 验证实验

中图分类号:TV131.6 文献标识码: A 文章编号: 1672-643X(2013)03-0176-04

Study on simulation of flow field and turbulence model for annular UV disinfection appliance

XUE Jiao, DENG Baoqing

(School of Environment and engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract: In order to predict the flow field characteristics of UV disinfection reactor and enhance the accuracy of the modeling results, the paper utilized CFD simulation method and applied Standard $k - \varepsilon$ model, Realizable $k - \varepsilon$ model, Low – Re $k - \varepsilon$ model and RSM model to simulate the hydrodynamic features. The results indicated that at the place of x = 0, z = 1 cm and x = 0, z = 83 cm, the simulation result of z direction of the four turbulence models accord with PIV experiment data on the whole. While at x = 0, z = 15 cm and x = 0, z = 64 cm, the simulation result of realizable $k - \varepsilon$ model has large deviations. The results of Low Re $k - \varepsilon$ model and RSM model are more ideal in hydrodynamic modeling.

Key words: UV disinfection appliance; CFD; turbulence model; verification experiment

紫外消毒因其杀菌光谱性强,处理效率高,且作 为纯物理性消毒,不会向水体排放二次污染物,运行 安全可靠,所以在水处理中的应用越来越广泛。传 统的 UV 消毒反应器的优化设计靠生物验证试验来 进行,过程相对复杂,成本高昂且实验耗时较长。基 于 CFD 的数值模拟方法因其模拟的时效性,可视性 以及可靠性成为了现在较为主流的研究方式^[1-2]。 Bass^[3]、Taghipour 等^[4]、Janex 等^[5]、Kamimura 等 人^[6]分别用 CFD 对 UV 反应器流场进行了模拟, Sozzi 等^[7]、Pruvost 等^[8]、Liu 等人^[9]应用 PIV 实验 和 CFD 模拟对 UV 反应器展开了流态研究,通过流 场的预测、模拟和分析,发现湍流模型的选择与水力 特性的模拟密切相关,因此对 UV 消毒反应器内的 流场模拟时,选取能够正确反映流场特性的湍流模 型十分重要。本文即探讨湍流模型对紫外反应器流 场模拟的影响。

1 研究对象

本文以 L 型 UV 反应器为研究对象,如图 1 所示。反应器的内径为 8.9 cm,长度为 88.9 cm,中心的紫外灯管外径为 2 cm,进出口管的直径为 1.91 cm,进水管位于反应器一端的中心,出水管设置于距另一端 2.54 cm 处,UV 灯管的支架位于距离反应器主体入口 18.6 cm 处。进水管长度满足 $\frac{L}{D}$ = 45, 其中 L 为管长,D 为管径。

2 水力模拟

2.1 控制方程

反应器内的流动为不可压缩流,其控制方程可 以简化为:

连续性方程:

收稿日期:2013-01-10; 修回日期:2013-01-26

作者简介:薛娇(1988-),女,江苏宜兴人,硕士在读,主要研究方向为环境数值模拟。

动量方程:

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j} - \rho \overline{u_i' u_j'}\right) + \rho g_i \quad (2)$$

式中: u_i 为i方向的速度分量; u_j 为j方向的速度分量; x_i 为j方向上的坐标分量; x_j 为j方向上的坐标分量;p为压力; ρ 为流体的密度; μ 为流体的动力 粘度;t为时间; g_i 为i方向上的重力分量; $\rho u_i u_j$ 为 湍流应力。

2.2 湍流模型

通常,反应器内流动处于湍流状态,采用合适的 湍流模型是模拟结果正确与否的关键。本研究分别 采用标准 $k - \varepsilon$ 模型、Realizable $k - \varepsilon$ 模型、低雷诺 $k - \varepsilon$ 模型和雷诺应力模型(RSM)分别对 UV 反应器 的水力特性进行模拟。

标准 $k - \varepsilon$ 模型、Realizable $k - \varepsilon$ 模型以及低雷 诺 $k - \varepsilon$ 模型的湍动能 k 的方程可表示为:

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i)$$

$$= \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_i}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] - \rho \overline{u_i u_j} \frac{\partial u_j}{\partial x_i} - \rho \varepsilon$$
(3)

耗散率 ε 方程表示为如下形式:

$$\frac{\partial}{\partial t}(\rho\varepsilon) + \frac{\partial}{\partial x_i}(\rho\varepsilon u_i) = \frac{\partial}{\partial x_j} \Big[\left(\mu + \frac{\mu_i}{\sigma_\varepsilon} \right) \frac{\partial\varepsilon}{\partial x_j} \Big] + f$$
(4)

其中f在3种k-ε模型中的表达形式分别为:

$$f_{ske} = C_{1\varepsilon} \frac{\varepsilon}{k} (-\rho \,\overline{u_i' u_j'}) \frac{\partial u_j}{\partial x_i} - C_{2\varepsilon} \rho \,\frac{\varepsilon^2}{k}$$
$$f_{rke} = \rho C_1 S_{\varepsilon} - \rho C_2 \frac{\varepsilon^2}{k + \sqrt{\nu\varepsilon}}$$

 $f_{low-Re} = C_{\varepsilon 1} f_{\varepsilon 1} \frac{\varepsilon}{k} (-\rho \,\overline{u_i' u_j'}) \frac{\partial u_j}{\partial x_i} - C_{\varepsilon 2} f_{\varepsilon 2} \rho \,\frac{\varepsilon^2}{k} \tag{5}$

标准
$$k - \varepsilon$$
模型的湍流粘性系数由 k 和 ε 表示如下:

$$\mu_{\iota} = \rho C_{\mu} \frac{k^2}{\varepsilon} \tag{6}$$

其中:C"是常数。

Realizable k – ε 模型的湍流粘性系数的表示方法与上式相同,但 C_{μ} 不再是常数,而改由下式计算得到:

$$C_{\mu} = \frac{1}{A_0 + A_s \frac{kU^*}{\varepsilon}}, \ U^* \equiv \sqrt{S_{ij}S_{ij} + \tilde{\Omega}_{ij}\tilde{\Omega}_{ij}}$$

$$A_0 = 4.04, A_S = \sqrt{6} \cos\phi$$

$$\phi = \frac{1}{3} \cos^{-1}(\sqrt{6}W), W = \frac{S_{ij}S_{jk}S_{ki}}{\overline{S}^3}, \widetilde{S} = \sqrt{S_{ij}S_{ij}},$$

$$1 \quad \partial u_i \quad \partial u_i$$

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$
(8)

低雷诺 $k - \varepsilon$ 模型的湍流粘性系数表示为:

$$\mu_{\iota} = \rho C_{\mu} f_{\mu} \frac{k^2}{\varepsilon} \tag{9}$$

雷诺应力模型的控制方程为:

$$\frac{\partial}{\partial t}(\rho \ \overline{u_{i}u_{j}}) + \frac{\partial}{\partial x_{k}}(\rho U_{k} \ \overline{u_{i}u_{j}})$$

$$= -\frac{\partial}{\partial x_{k}}\left[\rho \ \overline{u_{i}u_{j}u_{k}} + \overline{p(\delta_{kj}u_{i} + \delta_{ik}u_{j})}\right] + D_{T,ij}$$

$$\frac{\partial}{\partial x_{k}}\left[\mu \ \frac{\partial}{\partial x_{k}} \ \overline{u_{i}u_{j}}\right] - \rho\left(\overline{u_{i}u_{k}} \ \frac{\partial U_{j}}{\partial x_{k}} + \overline{u_{j}u_{k}} \ \frac{\partial U_{i}}{\partial x_{k}}\right) - P_{ij}$$

$$\frac{\rho\beta(g_{i} \ \overline{u_{j}\theta} + g_{j} \ \overline{u_{i}\theta})}{G_{ij}} + \overline{p(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}})} - \frac{\rho(u_{i}u_{k} \ \frac{\partial u_{i}}{\partial x_{k}} + \overline{u_{i}u_{k}} \ \frac{\partial U_{i}}{\partial x_{k}}) - \frac{\rho\beta(g_{i} \ \overline{u_{i}}\theta + g_{j} \ \overline{u_{i}}\theta)}{G_{ij}} + \overline{p(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}})} - \frac{\rho(u_{i}u_{k} \ \frac{\partial u_{i}}{\partial x_{k}} + \overline{u_{i}u_{k}} \ \frac{\partial u_{i}}{\partial x_{k}})}{F_{ij}} - (10)$$

方程中第一项为瞬态项,其他各项: C_{ij} 为对流 项; $D_{r,ij}$ 为湍动扩散项; $D_{L,ij}$ 为分子粘性扩散项; P_{ij} 为剪应力产生项; G_{ij} 为浮力产生项; Φ_{ij} 为压力应变 项; ε_{ij} 为粘性耗散项; F_{ij} 为系统旋转产生项。

2.3 计算细节

本计算采用四面体网格,网格总数约为40万 个,其中入流和出流的小圆管道的网格总数约为 8000个。

UV 反应器内的流体为水,流态为紊态。进口流量 为6.94×10⁻⁴m³/s,对应的入口流速为2.43 m/s,进口 的水力直径为1.91 cm,湍流强度为10%。选取上述4 种湍流模型分别进行模拟,采用 SIMPLE 算法,二阶迎 风格式进行计算。

3 结果和讨论

3.1 近入口处速度矢量

图 2(a) ~ (d) 分别展示了标准 k - ε 模型、Re-

alizable $k - \varepsilon$ 模型、低雷诺 $k - \varepsilon$ 模型(即 Low - re $k - \varepsilon$ 模型)以及 RSM 模型模拟的 UV 反应器入口处的速度矢量。Realizable $k - \varepsilon$ 模型的计算结果更贴近 PIV 实验^[7]的矢量图。

3.2 轴向速度

图 3(a)~(d)所示为z = 1 cm,15 cm,64 cm 以 及 83 cm 处,轴向流速的分布及 PIV 实验结果^[7]。

图 3 轴向流速分布及 PIV 实验结果

由模拟结果和 PIV 实验数据的趋势来看,选用 的 4 种湍流模型都较好地捕捉到了速度场的分布情 况。当x = 0, z = 1 cm 时,4 种模型模拟的结果与实 验数据都很贴近,其中低雷诺 $k - \varepsilon$ 模型最符合实验 结果;当x = 0, z = 15 cm 时,Realizable $k - \varepsilon$ 模型与 实验结果偏差较大,其他三种模型都较符合,其中低 雷诺 $k - \varepsilon$ 模型与实验结果符合最好;当x = 0, z =64 cm 时,标准 $k - \varepsilon$ 模型的模拟误差最大,没能很 好的捕捉到水力特性;当x = 0, z = 83 cm 时,四种模 型的模拟结果与实验的趋势一致,其中低雷诺 $k - \varepsilon$ 模型和 RSM 的模拟结果与实验最吻合。

4 结 语

本文采用了标准 $k - \varepsilon$ 模型、Realizable $k - \varepsilon$ 模型 型、低雷诺 $k - \varepsilon$ 模型和雷诺应力模型对 L 型 UV 反 应器的流场进行了模拟,得到了反应器内的流场分 布情况。与相关实验结果做对比,低雷诺 $k - \varepsilon$ 模型 和 RSM 模型模拟的结果与实际流动情况更为符合, 因此,上述两种湍流模型可以用作研究不同构型 UV 反应器内部流场情况的可靠模型,从而改进和 优化 UV 反应器的构型设计。

参考文献:

[1] 张 艳,李 继. CFD 技术在水处理紫外消毒中的应用 [J].环境工程, 2011,29(S):123-126.

- [2] 张光辉,顾平,于丹丹,等.紫外线消毒器水力特性的研究[J]. 水处理技术, 2008,34(2):16-20.
- [3] Bass M. Latest advances in UV disinfection hydrodynamic simulation and relation to practical experiences [J]. Proceeding Aquatech Amsterdam, 1996,46(4):581-590.
- [4] Taghipour F, Sozzi A. Modeling and design of ultraviolet reactors for disinfection by – product precursor removal [J]. Desalination, 2005,176(1):71-80.
- [5] Janex M L, Savoye P, Do Quang Z, et al. Impact of water quality and reactor hydrodynamics on waste – water disinfection by UV, use of CFD modeling for performance optimization[J]. Water Sci. Technol., 1998,38:71-78.
- [6] Kamimura M, Furukawa S, Hirotsuji J. Development of a simulator for ozone/UV reactor based on CFD analysis[J].
 Water Sci. Technol., 2002,46:13 – 19.
- [7] Sozzi A, Taghipour F. Experimental investigation of flow field in annular UV reactors using PIV [J]. Ind. Eng. Chem. Res., 2005,44:9979-9988.
- [8] Pruvost J, Legrand J. Particle image velocimetry investigation of the flow – field of a 3D turbulent annular swirling decaying flow induced by means of a tangential inlet[J]. Exp. Fluids, 2000,29:291 – 301.
- [9] Liu D, Ducoste J J, Jin S S, et al. Evaluation of alternative fluence rate distribution models [J]. Journal of Water Supply: Research and Technology AQUA, 2004,153(6): 391-408.