复式断面明渠水流三维数值模拟

吕彬,魏文礼,刘玉玲

(西安理工大学水利水电学院,陕西西安710048)

摘 要:复式断面渠道水流流场结构比较复杂,本文用耦合式求解器对复式断面明渠水流的三维流场进行了模拟。 采用交错网格,界面上的动量差值采用 Roe 格式,紊流数学模型选用雷诺应力模型。将计算结果与实验结果进行比 较,两者的吻合度较好,从而验证了数学模型的可靠性,最后又对复式断面明渠横剖面上水流运动特性进行了分析。 关键词:复式断面明渠;耦合式求解; Roe – FDS;二次流

中图分类号:TV131.4 文献标识码: A 文章编号: 1672-643X(2012)05-0071-03

3D Numerical Simulation for hydraulic characteristics of compound section of open channel

LÜ Bin, WEI Wenli, LIU Yuling

(Faculty of Water Resources and Hydroulic Power, Xian University of Technology, Xian 710048, China)

Abstract: The flow field structure of compound channel is more complex. this paper simulated the compound open-channel flows based on reynolds stress model (RSM) and finite volume method (FVM) and also used the coupled solver. It apply Roe averaged flux difference splitting (Roe – FDS) to discretizing flux. The comparison between numerical results and experimental data showed a very good agreement. Finally, the hydraulic characteristics of the cross – section of the compound channel was analyzed.

Key words: compound section of open channel; coupled solver; Roe - FDS; secondary flow

许多的天然河道及渠道都是由主河槽和浅滩构 成的,这种河道或渠道断面称之为复式断面,当河道 水位上涨或渠道中充满水时,复式断面上的主槽和滩 地共同过流。由于在主河槽中水流运动速度较快,而 在滩地上水流运动速度相对较慢,这就导致了水流在 主河槽及滩地间不停地进行能量的交换,使得复式断 面河道及渠道中的水流流场异常复杂。许多学者对 此进行过大量的研究,早期的研究如 Tominaga $A^{[1]}$ 等 对复式断面明渠进行了实验研究,林斌良等^[2]采用非 线性 紊流数学模型和代数应力模型模拟复式断面明 渠三维紊流,槐文信等^[3]用非均匀交错网格下的混合 有限分析法(HFAM)对漫滩恒定明渠水流进行了三 维数值模拟, Kang H 等^[4]研究比较了在主槽和滩地 上有无植物时的流场特性,梁爱国等^[5]采用雷诺应力 模型对复式断面明渠二次流进行数值模拟,并与实验 做比较,验证了模型的可靠性,槐文信等^[6]采用考虑 浮力效应的 RNG 双方程模型,结合混合有限分析法 对复式断面明渠流中水平圆孔热水浮力射流进行了 数值模拟,张明亮等^[7]研究了植被作用下复式渠道的 三维湍流特性,肖柏青等^[8]运用大涡模拟方法计算了 个非对称复式断面明渠内的水流运动和污染物的扩散。纵观现有的研究成果,多数的模拟研究都采用的 是分离式求解器即压力校正的方法,本文为寻求计算 复式断面明渠水流特点的新方法,采用了耦合式求解 器,物理量在界面上的插值采用的是 Roe 格式,网格 的划分采用交错网格,紊流数学模型采用雷诺应力模 型。将计算结果与实验结果进行比较,以验证模型的 可靠性。

1 数学模型

1.1 控制方程

描述水流的时均控制方程如下:

连续性方程:
$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0$$
 (1)

动量方程:
$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} +$$

$$\frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] - \frac{\partial}{\partial x_j} (\rho \ u_i' u_j') + \rho g_i$$
(2)

$$-\rho \overline{u_i'u_j'} = \mu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) - \frac{2}{3} \left(\rho k + \mu_t \frac{\partial u_i}{\partial x_i}\right) \delta_{ij} \quad (3)$$

收稿日期:2012-04-11; 修回日期:2012-04-28

基金项目:国家自然科学基金项目(51178391);陕西省重点学科建设专项资金资助

作者简介:吕彬(1987-),男,陕西洛南人,硕士研究生,主要从事计算流体力学研究。

式中: t 为时间; x_i 为沿 i 方向的空间坐标; u_i 为沿 i 方向的速度分量; μ_i 为湍动粘度, $\rho \ \pi \mu$ 分别为流体 密度和分子粘性系数, p 为压强, g_i 为 i 方向的重力 加速度。

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho k u_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \Big[\left(\mu + \frac{\mu_i}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \Big] + G_k - \rho \varepsilon \quad (4)$$

系列能耗散举
$$\mathcal{E}$$
力程:

$$\frac{\partial(\rho\varepsilon)}{\partial t} + \frac{\partial(\rho\varepsilon u_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_i}{\sigma_k} \right) \frac{\partial\varepsilon}{\partial x_j} \right] + C_1 \frac{\varepsilon}{k} G_k - C_2 \rho \frac{\varepsilon^2}{k}$$
(5)

其中:湍动粘度 $\mu_{\iota} = \rho C_{\mu} \frac{k^2}{\varepsilon};$ 模型常数 $C_1 = 1.44$ 、 C_2

=
$$1.92_{C_{\mu}} = 0.99_{\sigma_{k}} = 1.0_{\sigma_{s}} = 1.3$$

雷诺应力方程:

$$\frac{D u_i u_j}{Dt} = \frac{\partial}{\partial x_l} \left[\left(C_k \frac{k^2}{\varepsilon} + v \right) \frac{\partial u_i u_j}{\partial x_l} \right] + P_{ij} - \frac{2}{3} \delta_{ij} \varepsilon - C_1 \frac{\varepsilon}{k} \left(\overline{u_i u_j} - \frac{2}{3} \delta_{ij} k \right) - C_2 \left(P_{ij} - \frac{2}{3} \delta_{ij} P \right)$$
(6)

$$P_{ij} = -\left(\overline{u_i'u_k'} \frac{\partial \overline{u_j'}}{\partial x_k} + \overline{u_j'u_k'} \frac{\partial \overline{u_j'}}{\partial x_k}\right)$$
(7)

$$P_{ii} = -2 \, \overline{u_i u_k} \, \frac{\partial u_i}{\partial x_k} \tag{8}$$

$$P = P_{ii}/2 \tag{9}$$

 $C_k = 0.09 \times 0.11$, $C_1 = 1.5 \times 2.2$, $C_2 = 0.4 \times 0.5$

在实际计算中, 雷诺应力方程需要和平均运动 的连续性方程, 紊动能 k 和紊动动能 ε 方程以及雷 诺方程联立求解, 共12 个方程, 未知量也有12 个, 包 括6 个雷诺应力分量, 3 个速度分量, 压强, 紊动动能 k 和紊动动能耗散率 ε。

1.2 Roe 通量差分格式^[9]

求解双曲型守恒方程时需要计算数值通量,通过 函数重构可以得到守恒变量在网格边界处的高阶近 似值,然后求解高阶数值通量。采用通量差分分裂法 来保证格式具有正确的迎风性质,保证数值解具有物 理意义。本文采用 Roe 平均通量差分分裂法(FDS)。

$$f_{j+1/2} = \frac{1}{2} \{ f(u_{j+1/2}^{L}) + f(u_{j+1/2}^{R}) - \tilde{a}(u_{j+1/2}^{R} - u_{j+1/2}^{L}) \}$$
$$\tilde{a} = \frac{f(u_{j+1/2}^{R}) - f(u_{j+1/2}^{L})}{u_{j+1/2}^{R} - u_{j+1/2}^{L}}$$

式中: $u_{j+1/2}^{L}$, $u_{j+1/2}^{R}$ 分别表示 $u \propto x_{j+1/2}$ 左右的值,通过 插值函数求得右侧的值。

2 计算区域及网格划分

本文研究所用的断面尺寸采用文献[1]的断面(图 1),其中 b = 0.4 m, h = 0.08 m,纵向长度为2 m。计算 区域的横断面网格图绘于图2 中,采用结构化网格。

3 边界条件

在进口,所有边界条件都按本质条件给出, $u = u_0, v = v_0, w = w_0, k = k_0, \varepsilon = \varepsilon_0$;在出口边界,按充 分发展湍流条件给出,即设各变量法向导数为零, $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial k}{\partial n} = \frac{\partial \varepsilon}{\partial n} = 0$;在壁面边界,采用壁 面函数法。自由液面采用对称边界。

4 计算结果分析

4.1 计算结果与实验结果的比较

本文将横断面上的流速矢量图的计算结果与实验结果绘于图 3 中。将横断面上纵向流速 v_x 与整个流场中最大流速 v_{max} 的比值的等值线图绘于图 4 中。

由图 3 可以看出,计算结果与实验结果的流速 矢量分布规律相同,都是在主槽中有对称漩涡存在, 且漩涡的位置两者吻合度较好。由图4的 v_x/v_{max} 可 看出,计算结果和实验结果的分布规律相近,只是在 主槽中左右壁面处计算结果和实验结果稍有出入, 这可能是由于在计算中壁面的边界处理不当引起 的,但在其它地方两者的吻合度较好。

由此可见,本文所用的计算复式断面水流特性 的数学模型是可靠的。

4.2 复式断面水流横向运动强度的研究

本文将横断面上主河槽上 y = 0.05 m, y = 0.15 m, 及滩地上 y = 0.25 m, y = 0.35 m 处的沿水

深方向的横向流速 v_y 与纵向流速 v_x 的比值 v_y/v_x 分布 图见图 5。由图 5 可看出,在主槽上水深 0.04 m 以下 的水流横向运动比较强烈,最大值可达到纵向水流运 动的 13%;在滩地上水深为 0.01 m 以下的水流横向 运动比较强烈,最大值可达到纵向水流运动的 5%。 由图 5(a) 及图 5(b)还可看出,在主槽上靠近主槽的 内外壁面附近,水流横向运动强度的大小变化是一致 的,但是方向是相反的,这主要是由于在主槽上有两 个方向相反的漩涡的存在。而在滩地上,滩地左右两 端的水流的横向运动大小和方向都比较一致。

4.3 紊动动能及耗散率分析

本文将横断面上的紊动动能及耗散率图绘于图 6 及图 7 中。

图7 紊动动能耗散率分布

由图 6 可见,复式断面明渠中,水流紊动主要集 中在主槽中,而在滩地部分水流紊动比主槽中弱的 多。由紊动动能耗散率分布图 7 可见,能量耗散也 是主槽中要强于滩地处,且在主槽中靠近渠底处能 量耗散要强于上部。

5 结 语

本文用耦合式求解器对复式断面明渠水流的三 维流场进行模拟。采用交错网格,界面上的动量差 值采用 Roe – FDS 格式,紊流数学模型选用雷诺应 力模型。计算结果与实验结果吻合度良好,从而验 证了模型的可靠性,最后又对复式断面上水流的横 向运动规律进行了研究,结果显示:主槽上的水流横 向运动比滩地的强烈,渠底的水流横向运动比上部 的强烈。对紊动动能及耗散率的分析显示,主槽中 的紊动动能及耗散率都要强于滩地处。

参考文献:

- [1] Tominaga A, Nezu L. Turbulent structure in compound open-channel fows[J]. Journal of Hydraulic Engineering, 1991,117(1):21-41.
- [2] 林斌良.复式断面明渠三维紊流的数值模拟[J].水利学报,1995,26(3):52-61.
- [3] 槐文信,陈文学,童汉毅,等. 漫滩恒定明渠水流的三维 数值模拟[J]. 水科学进展,2003,14(1):15-19.
- [4] Kang H, Choi S. Turbulence modeling of compound open - channel flows with and without vegetation on the floodplain using the Reynolds stress model [J]. Advances in Water Resources, 2006, 29(11):1650-1664.
- [5] 梁爱国,槐文信.复式断面明渠二次流的数值模拟[J]. 应用基础与工程科学学报,2008,16(2):296-304.
- [6] 槐文信,肖庆华,曾玉红,等.复式断面明渠中水平热水 浮力射流近区稀释特性研究[J].应用数学和力学, 2008,29(2):239-246.
- [7] 张明亮,沈永明. 植被作用下复式渠道的三维湍流数值模拟 [J]. 应用基础与工程科学学报,2009,17(3):402-411.
- [8] 肖柏青,李 然,罗 麟,等. 非对称复式断面明渠中污染物输 移扩散的大涡模拟[J]. 水利学报,2011,42(3):309-314.
- [9] 段 毅,杨 永. 一维高阶 ENO 格式的应用研究[J]. 西北 工业大学学报,2003,21(4):486-489.