首页 | 官方网站   微博 | 高级检索  
     


Bioactive monetite‐containing whisker‐like fibers reinforced chitosan scaffolds
Authors:Abdorreza S Mesgar  Zahra Mohammadi  Fariba Rasouli‐Disfani
Affiliation:Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
Abstract:The aim of this work was to develop bioactive chitosan scaffolds reinforced with monetite‐containing whisker‐like fibers. The fibers synthesized by homogeneous precipitation were characterized as monetite/hydroxyapatite short fibers (MAFs), using XRD, FTIR and SEM. The pure chitosan and MAFs/chitosan composite scaffolds were produced by freeze‐drying, and characterized with respect to porosity, pore size, swelling behavior, compressive strength and modulus, and in vitro bioactivity. The incorporation of MAFs in chitosan matrices led to increase the pore size, according to the evaluation by FE‐SEM, and decrease the porosity of composite scaffolds. The swelling ratio decreased as MAFs content of scaffolds increased. The compressive strength and modulus of scaffolds were improved by an increase in MAFs content. The noncross‐linked scaffolds with a chitosan: MAFs weight ratio of 1:1 (CW3) showed a porosity of 75.5%, and the strength and modulus of 259 kPa and 2.8 MPa in dry state, respectively. The crosslinking by glutaraldehyde resulted in improved mechanical properties. The strength and modulus of cross‐linked CW3 scaffolds in wet state reached to 345 kPa and 1.8 MPa, respectively. The in vitro bioactivity of the reinforced scaffolds, evaluated by FE‐SEM/EDS, XRD, and ATR‐FTIR, was confirmed by the formation of a carbonated apatite layer on their surfaces when they soaked in simulated body fluid (SBF). The results of this initial study indicate that the monetite‐containing whisker‐like fibers may be an appropriate reinforcement of chitosan scaffolds.
Keywords:apatite  bioceramics  mechanical properties  whiskers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号