首页 | 官方网站   微博 | 高级检索  
     

氢气分离膜内嵌改进蒸汽活化转化丙烷脱氢过程模拟和经济分析
引用本文:肖红岩,郭明钢,贺高红,张宁,黄爱斌,寿建祥,阮雪华.氢气分离膜内嵌改进蒸汽活化转化丙烷脱氢过程模拟和经济分析[J].化工进展,2019,38(12):5257-5263.
作者姓名:肖红岩  郭明钢  贺高红  张宁  黄爱斌  寿建祥  阮雪华
作者单位:大连理工大学盘锦校区石油与化学工程学院,精细化工国家重点实验室,辽宁盘锦124221;中国石油化工股份有限公司镇海炼化分公司,浙江宁波,315207;大连理工大学盘锦校区石油与化学工程学院,精细化工国家重点实验室,辽宁盘锦124221;中国石油化工股份有限公司镇海炼化分公司,浙江宁波315207
基金项目:国家自然科学基金(21606035);长江学者项目(T2012049)
摘    要:在蒸汽活化转化(STAR)工艺中,丙烷脱氢反应产物含有大量氢气、甲烷等不凝组分,传统的高压低温液化流程,操作压力达到3.30MPa,浅冷温度-24℃,深冷温度-78℃,不仅压缩能耗高,而且氢气副产品浓度低,无法直接在炼化过程中实现利用。对此,本文提出在浅冷之后嵌入氢气膜分离单元,采用Prism-Ⅱ膜脱除反应产物中大部分氢气后再进一步增压和深冷液化。采用HYSYS对改进工艺模拟优化后得出:浅冷操作压力2.40MPa、温度-24℃,深冷操作压力3.30MPa、温度-78℃,总压缩能耗降低16.1%,氢气纯度由82.8%提高到99.0%,回收率超过85%。以350kt/a STAR工艺为例进行改进工艺的技术经济分析,最优膜面积为2680m2,总压缩功耗由6850kW降低至5750kW,节约公用工程约5.72×106CNY/a,设备折旧仅增加0.61×106CNY/a,产出氢气约1.23×108m3/a。综合考虑节能、新增设备折旧和氢气产出,年净收益增加8.7×107CNY。结果表明,膜分离改进有效地提高了STAR工艺的能效和经济性。

关 键 词:丙烷脱氢    分离  计算机模拟  优化设计
收稿时间:2019-03-20

Retrofit and optimization of steam active reforming (STAR) propane dehydrogenation technology with embedded hydrogen membrane separation
Hongyan XIAO,Minggang GUO,Gaohong HE,Ning ZHANG,Aibin HUANG,Jianxiang SHOU,Xuehua RUAN.Retrofit and optimization of steam active reforming (STAR) propane dehydrogenation technology with embedded hydrogen membrane separation[J].Chemical Industry and Engineering Progress,2019,38(12):5257-5263.
Authors:Hongyan XIAO  Minggang GUO  Gaohong HE  Ning ZHANG  Aibin HUANG  Jianxiang SHOU  Xuehua RUAN
Affiliation:1. State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology at Panjin, Panjin 124221, Liaoning, China
2. SINOPEC Zhenhai Refining and Chemical Company, Ningbo 315207, Zhejiang, China
Abstract:In steam active reforming (STAR) propane dehydrogenation technology, the reaction effluent contains considerable permanent gases, e.g., H2 and CH4. Accordingly, the liquefaction needs to be operating at high pressure and low temperature (3.30MPa for shallow condensation at -24℃ and cryogenic condensation at -78℃), which is extremely energy-intensive. Besides, the by-product hydrogen, coexisting with CH4, is poor in concentration and disable to be used directly for refining processes. In this research, a retrofit with membrane unit embedding between the shallow and the cryogenic condensation units was attempted. Prism-Ⅱ membrane modules were employed to remove H2 sufficiently with the content in permeate up to 99.0%, and the residual stream was further compressed and liquefied through cryogenic condensation. The optimum operation parameters were determined through process simulation in HYSYS system. It is proper to conduct shallow condensation at 2.40MPa and -24℃, and operate cryogenic condensation at 3.30MPa and -78℃. The simulation results revealed that the power for compression can be saved by 16.1%, meanwhile, hydrogen concentration can be improved from 82.8% to 99.0% with the recovery ratio up to 85%. The techno-economic analysis based on the retrofit for a 350kt/a STAR plant revealed that the optimum Prism-Ⅱ membrane area is about 2680m2, the total compression power is decreased from 6850kW to 5750kW, which means a saving of 5.72×106CNY/a for utilities. The annual equipment depreciation increases by only 0.61×106CNY, and H2 yield is about 1.23×108m3/a. In virtue of energy saving, new equipment depreciation and hydrogen purification, the annual gross profit can be increased by 8.7×107CNY for a 350kt/a STAR plant. On the whole, the energy efficiency and the profit of STAR technology can be obviously enhanced through the retrofit with embedded hydrogen membrane separation.
Keywords:propane dehydrogenation  membrane  separation  computer simulation  optimum design  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号