9.00 - 20 16PR 外胎硫化测温

王顺利,邵文波

(北京昊华橡胶厂,北京 102401)

摘要:以9.00-20 16PR 轮胎为试验对象,通过测温检验外胎各部位硫化程度,发现胎面胶硫化程度最深,胎圈部位硫化程度最浅,其中钢丝圈包布与帘布层之间硫化不足,需进行后硫化才可达到要求。用硫化罐高压硫化外胎时,由于罐体下、中、上部位的外压温差,使同罐外胎硫化程度不同,导致外胎质量不均一。

关键词:外胎;混炼胶;活化能;等效硫化时间;硫化程度

中图分类号: TO336.1 +2 文献标识码:B

文章编号:1006-8171(2001)02-0115-03

以 9.00 - 20 16PR 轮胎为试验对象,对硫化罐硫化外胎进行测温,检验轮胎各部位的硫化程度,从而为调整外胎硫化条件提供依据。

1 实验

1.1 测温仪器和设备

WL- 型微电脑测温仪,可记录任意时刻的温度,并计算出等效硫化时间,具有数据存储和断点保护等功能,测温精度为0.1 ,北京橡胶工业研究设计院研制。硫化罐,湛江机械厂生产。

1.2 热电偶的加工与埋置

热电偶直径为 0.3 mm,外覆 PVC 绝缘层,可实现 16 个部位同时测温。

将热电偶导线(已无绝缘层)冷绕在芯径为 8 mm 的圆柱上,螺旋长度为 100~150 mm。导线长度为 0.5 m.测温引线长度为 15 m。

热电偶线的埋置:热电偶线按顺序分2组,并从胎趾引出。为了增大通道,将胎圈下部外帘布层剪掉,用胶片将电偶线固定。每一组热电偶应与模型插嘴槽对齐。

1.3 硫化

硫化工艺条件如表 1 所示。

作者简介:王顺利(1971-),男,北京房山人,北京吴华橡胶 厂助理工程师,从事轮胎配方设计工作。

表 1 硫化工艺条件

工艺操作	工艺条件	时间/ min
一次过热水预热	水压为 2.0 MPa ,温度为 160	10
水胎		
二次过热水循环	水压为 2.5 MPa ,温度为 165	5
外压升温	蒸汽压力为 0~0.3 MPa	7
硫化保持	蒸汽压力为 0.3 MPa	60
罐内后冷却	内冷却水压在 0.7 MPa 以	20
	上,外冷却水不漫罐	

2 等效硫化时间的计算

等效硫化时间 t_v (单位为 min)的计算公式为:

$$t_{\rm v} = \int_{t_0}^{t_{\rm x}} \exp\left[\frac{E}{R}\left(\frac{1}{T_0} - \frac{1}{T}\right)\right] dt$$

式中 *E* ——活化能 ,kJ ·mol ⁻¹ ;

R ——气体常数, 等 于 0.008 314 3 kJ·(mol·K)⁻¹;

 T_0 ——基准温度(本试验取 413 K), K;

T ——实测温度, K;

 t_0 ——测量起始时间;

 t_x ——测量到达时间。

其中, E的计算公式为:

$$E = \frac{\sum (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} R$$

式中 *i* — 硫化温度,分别为 110,120,130, 140 和 150 ; X_i ——温度 i 的倒数:

 $Y_i \longrightarrow Y_i = \ln t_{90i}$;

 \overline{X} , \overline{Y} —— X_i 和 Y_i 的平均值。

3 结果与讨论

3.1 硫化程度的比较

通过对 9.00 - 20 16PR 外胎进行测温,计算出各部位的等效硫化时间,结果见表 2。

由表 2 可以看出,通过比较各部位等效硫化时间得出,冠部胎体胶的总硫化程度较深,其由深到浅的顺序是:内衬胶、内帘布层第 3-4 层之间、内帘布层与外帘布层之间、缓冲帘布层与缓冲胶之间、外帘布层与缓冲层之间、缓冲胶与冠部胎肩胶之间,各部位硫化程度保持在硫化曲线平坦范围(140 ×113 min)之内。胎面胶的硫化程度最深,达 256%(胎面胶的正硫化时间为 37.6 min),超过本厂内控指标 130%~170%,这是胎面混炼胶硫化速度快(活化能小)造成的。胎圈部位的硫化程度较浅,其中第 1 钢丝圈包布与帘布层之间的正硫化时间为 13.81~15.57 min,在后硫化作用下,硫化程度达到本厂内控指标(23 min)要求。当外压介质

温度和内压热水温度降低时,胎圈部位最容易欠硫。

3.2 硫化罐硫化对成品硫化程度的影响

为了研究硫化罐硫化对成品硫化程度的影响,对硫化罐外压温差进行测量,结果见表 3。

从表 3 可以看出,当硫化时间为 26 min(即测温时间为 48 min)时,硫化罐体上、中、下的温度基本达到平衡,温差为 2.1 ;当硫化时间为 42 min(即测温时间为 64 min)时,硫化罐的最大温差为 0.8 。外压介质平均温度(测温时间为 24~84 min)为:下模 143.64 ,中模 139.98 ,上模 142.86 ,平均最大温差为 3.66 ,说明同罐硫化外胎的质量不均一。相对而言,下模硫化程度较深,上模硫化程度居中,中模硫化程度较浅。但当硫化罐下方存水时,下模的外胎出现欠硫。

为了防止胎圈部位欠硫,可提高外压介质温度及水胎和胎坯预热程度,即往水胎中充入蒸汽(1.3~1.4 MPa,194.3~197.0)或蒸汽和过热水(蒸汽压力 1 MPa,时间 5 min;过热水压力 2.5 MPa,温度 165 ,时间 5 min),且在充蒸汽或蒸汽和过热水时内

表 2 9.00 - 20 16PR各部位的等效硫化时间

	 活化能/ (kJ ·mol ^{- 1})		等效硫化时间/ min				
测温部位	·			正硫化		总硫化	
	1 *	2 * *	1 *	2 * *	1 *	2 * *	
内衬层-水胎	74.45	_	75.52	64.25	100.12	88.15	
内帘布层 3-4	90.16	90.16	61.51	64.25	91.68	88.15	
内帘布层-外帘布层	90.16	72.31	51.64	50.95	88.19	77.69	
外帘布层-缓冲层	72.13	79.84	46.16	46.35	69.45	69.35	
缓冲帘布层-缓冲胶	79.84	77.08	38.88	38.42	73.70	73.70	
缓冲胶-冠部胎肩胶	77.08	82.26	39.01	38.42	61.90	61.33	
胎面胶-模型	82.01	_	93.52	64.25	96.13	88.42	
胎肩胶-缓冲胶							
上模	82.26	79.17	48.39	48.47	69.84	69.85	
下模	79.17	77.08	46.13	46.27	68.40	68.46	
胎侧胶-外帘布层							
上模	78.33	72.31	51.99	52.01	72.41	72.57	
下模	78.33	72.31	53.70	53.70	66.27	66.64	
第1钢丝圈中间层(第4-5层)之间	48.32	49.57	31.34	64.25	53.80	88.42	
第2钢丝圈三角胶与钢丝圈之间	73.02	48.32	27.34	34.10	46.72	54.96	
第1钢丝圈包布与帘布层之间	79.42	90.16	15.57	13.81	44.61	45.88	
两个钢丝圈之间	90.16	90.16	25.43	64.51	52.74	88.42	

注:*电偶线经下方胶料;**电偶线经上方胶料。测温间隔时间为4 min;胎面挤出为三方四块,机外复合,胎侧胶粘合后接

· · · · · · · · · · · · · · · · · · ·											
测温时	罐盖	外压:	介质温度	量 最大	最大室温		罐盖	外压介)质温度	最大	安油
间/ min	温度	下	中 上	温差	至温	间/ min	温度	下「	中 上	温差	室温 ————
0	90.2	83.6 10	06.1 82.4	23.7	42.5	52	144.2	143.9 14	1.7 142.9	2.2	34.1
4	90.3	84.4 10	05.4 83.2	22.2	59.2	56	144.4	144.1 14	2.3 143.1	1.8	34.2
8	88.5	84.9 10	04.2 83.4	20.8	33.1	60	144.3	143.0 14	2.8 143.2	0.4	34.4
12	89.2	86.9 10	03.8 85.5	18.3	33.4	64	144.4	143.7 14	3.2 142.9	0.8	34.1
16	91.1	89.4 10	02.1 87.5	14.6	33.4	68	144.4	144.1 14	3.9 143.4	0.7	34.4
20	99.7	101.6 9	99.3 101.7	7 2.4	33.2	72	144.6	144.2 14	4.3 143.4	0.9	34.4
24	139.6	140.4 1	23.3 139.4	4 16.1	33.5	76	144.7	144.4 14	4.3 143.7	0.7	34.9
28	143.1	143.2 1	31.6 142.7	7 11.6	33.9	80	144.4	144.3 14	4.2 143.4	0.9	34.8
32	142.2	142.9 1	35.1 142.3	7.8	33.8	84	144.2	143.9 14	3.8 142.9	1.0	34.5
36	144.3	143.9 1	37.8 143.	1 6.1	34.2	88	137.1	136.7 13	9.2 135.6	3.6	34.9
40	144.7	144.2 1	39.3 143.2	2 4.9	33.9	92	110.1	107.5 13	8.5 106.5	32.0	35.4
44	144.6	144.2 1	41.1 143.4	4 3.1	34.4	96	101.9	36.8 10	0.2 45.4	63.4	36.0
48	144.3	143.8 1	41.7 143.	1 2.1	34.4	100	81.1	61.1 90	6.7 88.6	35.6	35.6

表 3 硫化罐外压温差

注:实测外压温度间隔为 2 min,摘录间隔为 4 min。

压介质不循环。此外,胎坯预热充分,可增加胎侧胶流动性,减少外胎的外观缺陷。

4 结语

通过测温检验外胎各部位硫化程度,发现胎面胶硫化程度最深,胎圈部位硫化程度最浅, 其中钢丝圈包布与帘布层之间硫化不足,需进 行后硫化才可达到要求。此外,硫化罐硫化外胎时,由于罐体下、中、上部位的外压介质存在温差,使同罐外胎硫化程度不同,导致外胎质量不均一。因此,在轮胎整体配方设计时,应对胶料的硫化速度进行合理调配,从而提高制定硫化条件的自由度,使生产出的外胎质量均一。

收稿日期:2000-08-29

黑色轮胎 绿色生产

中图分类号: TQ336.1 文献标识码:D

青岛国人橡胶研究院的轮胎硫化已实现 "三步革新":第一步采用胶囊定型罐式硫化;第二步采用热氮硫化生产新技术;第三步轮胎模 具不用外热蒸汽,轮胎生产全面取缔锅炉,现已完成工业试验,并即将在青岛平度投入批量生产。这就是国人的目标:"造国人轮胎,创国人特色,打国人品牌",并真正做到黑色轮胎,绿色生产。

为解决投入产出比和高产、优质、低消耗的协调性,国人橡胶研究院开发了胶囊定型轮胎罐式硫化机,保留了双模硫化机的胶囊定型与钢圈定中心,采用机外定型罐内硫化,在确保双模定型硫化质量的前提下,仍能保持罐式硫化的高产量。尚不到一年,产品已在国内外推广上百台。1999年该产品荣获"国家重点新产品"证书和青岛市科技进步一等奖。

2000年上半年国人橡胶研究院攻关成功

的轮胎热氮硫化生产线,技术先进,可淘汰过热水,且不必再用蒸汽与氮气混合加热,并可延长胶囊的使用寿命 3 倍以上。其硫化成本可降低47.6%(按每条载重轮胎计,蒸汽过热水硫化成本为 12.6元,热氮硫化成本为 6元)。以我国年产 1 亿条轮胎计算,全面推广新生产线每年可节省 10 亿多元。用远红外加热取代蒸汽加热,每条轮胎还可节省费用 5 元,因此下半年继续攻关,将外热蒸汽改为远红外硫化,从而使轮胎厂彻底淘汰了锅炉,实现了轮胎的清洁化生产。

青岛国人橡胶研究院与天利达橡胶机械有限公司共同开发的 RDL3.0 x8 热氮硫化轮胎生产线,在青岛圣达电力股份有限公司橡胶分公司使用半年多,用户非常满意。其工业化推广,可以说是轮胎硫化的一次创新革命。

(青岛国人橡胶研究院 程 源 天利达橡塑机械公司 赵鸿济供稿)