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Fault diagnosis using robust cascade observers with

application to spacecraft attitude control
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Abstract: This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of

cascade H_ optimal fault observers using LMI for spacecraft attitude control systems. The basic idea of the ap-

proach is to identify the gyro fault to good effect first and then makes a further diagnosis for the star sensor based

on the former. The H_ optimal fault observer in design has the robustness with respect to model uncertainties

and diagnosis uncertainties. Its robustness to unknown inputs is as a special study in frequency domain. Final-

ly, simulation results demonstrate the effectiveness and feasibility of the proposed control algorithm.
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Autonomy and fail-recovery operation in spacecraft
design on-board is critical issue in the presence of
faults and failures in sensors, actuators, and other
components. Comparing with the ground systems, it is
not practical to have physical backup systems based on
such as triple module redundancy with voting''’ and
quadruple redundancy with parity check'?’ in spacecraft
systems. This is due to the relational increase in cost
and also space limitation on-board the spacecraft. Con-
sequently, analytical redundancy is utilized as a power-
ful method to compare the expected behavior of the sys-
tem with the observed behavior.

The problems of fault detection and isolation
(FDI) and fault-tolerant control ( FTC) in spacecraft
attitude control system ( ACS) for the gyro and star
sensor (G&S) are addressed. The gyro and star sensor
which measure the angular rate and the angular position
respectively are the key components of ACS, and im-
provement to their accuracy and reliability contributes
directly to the success of the mission of the spacecraft.
The existing practical approaches mostly suppose either
the gyro or the star sensor is fault-free; otherwise the
measurement data fusion techniques'® >’
the alternative fault or even make it worse than before.

cannot remove

Since dual faults may well occur in G&S, it is necessa-
ry to design a framework taking the simultaneous faults
into account in FDI/FTC.

Among the existing methods for fault diagnosis,
model-based methods are the most popular and have re-
ceived considerable attention in the past two decades.
Many standard observer-based techniques exist in the
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literature providing different solutions to both the theo-
retical and practical aspects of the problem for the line-

©=8) " In contrast to the

ar time-invariant ( LTI) case
LTI case, the spacecraft attitude control as a nonlinear
problem lacks a universal approach and is currently an
active area of research'”™""!. In this paper, the prob-
lem of FDI, which considers the uncertainty of the ASC
caused by nonlinearity, can be converted into a classi-
cal H_ optimal control problem. Furthermore, we de-
sign two cascade observers using the cascaded relation-
ship between the dynamics

ACS'7") " This new structure is of significant practi-

and kinematics of

cal interest;

+ The FDI procedure is H_, optimal design orien-
ted, which help application engineers to design FDI
subsystem based on the mature H_ theory.

+ Compared with a single observer, two cascade
observers can separate a FDI design of ACS into a dy-
namics FDI design and a kinematics FDI design. It is
convenient not only to more simply select suitable pa-
rameters, but also to better fit multiple working modes,
e. g. attitude maneuver and attitude tracking.

- The cascade structure can transform the nonlin-
earity, unpredictable model uncertainty and diagnostic
uncertainty into a uniform unknown input from system-
inner to system-outer, where we can design a robust FDI
system based on many regular fault diagnosis methods.

In this paper, the FDI problem for G&S of ACS is
formulated using two cascades H_ optimal observers,
which make the residual converge to the fault vector a-
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chieving detection and estimates at the same time. The
first observer, using the extra degrees of freedom in the
new structure to consider nonlinearity and model uncer-
tainty, detects and estimates the gyro fault without an-
gular position information. After that the second one u-
tilized the estimates of angular velocity to make a ro-
bust diagnosis for the star sensor overcoming the impact
of gyro diagnosis uncertainty. In addition, H, ap-

!is presented to reduce the false alarm rate

proachm*m
of the designed observer and then a suitable trade-off
between the sensitivity to sensor faults and the robust-
ness to unknown inputs is also illustrated. Finally,
simulation results verify the effectiveness to G&S dual
faults, and a Compensation PD (CPD) controller is in-

troduced to maintain ACS stability.
1 Spacecraft Model and Notations

The mathematical model of a rigid spacecraft can
be derived by considering the equations describing the
dynamics and kinematics of a rigid body. With refer-
ence to Ref. [ 17 ] for details, these equations are
briefly recalled here.

JQ =-[2°]J2 +u (1)
where J € R denotes the symmetric inertia matrix , £2
=[0, 0, O]" € R’ the spacecraft angular veloci-
tyandu = [u, u, us] e R® the control torques
acting on the structure. We stress that all the equations
are expressed in the body fixed frame. Define

0 -0, 0
2= 0 0 -0
-0, 0 0

A common non-minimal parametrization usefully
adopted for parametrizing the kinematics is that of the
unitary quaternions, defined as

g, = cos g, q; = e[sini, 1 =1,2,3

with @ the rotation angle performed around the Euler’ s
axis, specified by the unit vector with components e,.
Defineq = [¢, ¢, ;1" € R’. Obviously
3
Y =1 (2)
i=0
The kinematics can be described as

ol - 11lo -0
[ g ] 2 [ R(0) [ q ] (3)
£, 0 0, -0
with R(02) = |0, - 0 0,
0, 0 -0 0
Definex, &4 2, x A g, assume that system has
stabilized in equilibrium £2, which denotes the orbit an-

gular velocity and consider the gyro fault f, =

[fa fa fal]' € R and the star sensor fault f, =
. 124 -

[fu Jfo fs]" e R’ to be detected. We eventually
obtain the cascade model of the rigid spacecraft under
fault conditions

X, =Ax, +B,u

. = Cx, +f, (4)
¥, = A (x,)x, +E(x,)®(x,)
yS = CSxS +!f‘) (5)
where
-1 X -1
Ag:_J [‘Qo]J’Bg:J ’Cg:IS
1 » 1 ..
A(x) == 3151, E(x,) = ydiag(s,),

3
& (x) = |1~ Z‘]?o C =1,
1=1

The first equation of Eq. (3) has not been consid-
ered since redundant. To this end, the following nota-
tions will be used.

A': The variable uncertainty operator.

Matrix I, ; the identity matrix of order n.

Matrix 0, ; the zero square matrix of order n.

Matrix 0

nm

. the zero n x m matrix.
diag, (a)/diag(a) : the diagonal square matrix of
order n with [a -+ a],,, as its diagonal vector, or the
one with a as its diagonal vector.
Tﬂ; the transfer matrix from input u to output y.
RH_ ; the space of all proper real rational stable
transfer matrices.
Matrix H(s) = [[2‘ g] , when used in y =
H( S ) u:
E=Aé +Bu, y = C¢£ + Du
H(s) = C(sI —A)"'B + D.
The setup will also be used throughout the paper
along with

A B, B,
G=|C, D, D12] (6)
¢, D, D,
We will also utilize the following result from Ref.
[18].
Theorem 1  Assume stabilizability and detect-

ability of (A,B,,C,) and that D,, = 0 and let N, and
N, denote orthonormal bases of the null spaces of (B,
C},) and (C,, D,,). There exists a controller K such
that || T,
R™" satisfying the following system of LMIs

(AR + RA" RC| B,

| . < 7 iff there exist symmetric R, S €

(1:;' 1) CR -y D, (](\)’ 2)<0
BT DTI -1

(7)
[AS + SA" SB, C'lr

N.) BTS I DT s 0 < O

0 I 1 - 11 )i

¢ D, -y

(8)
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2 H_ Optimal Fault Observer for Gyros

In this section, the H_ optimal fault observer for
gyros will be designed. According to Eq. (4), the fol-
lowing observer structure is adopted, by making use of
the dynamical observer as

X, =A%, +Bu+n,

. ﬁg = Cgfg (10)
£, =AU, +B,(y, - 7,)
n, = Cgllfg +Dgl‘(yg _fg) (11)

3x3 3x3 3x3 3x3
whereA, e R, B, e R ,C, e R ,D, e R™.

We will write K, (s) g"] to represent

- I:Agl‘
CgL Dgl,
the dynamical observer gain in Eq. (10).

Define the state estimate errore, = x, — %, and the
output estimate erro r, =y, — ¥,, so it follows Egs.
(4) and (10) that

é, = [A, -K,(s)C,le, - K, (s)f,
Yy, =Ce, +f, (12)

From Eq. (12), it is clear that by scheming
K, (s) so as to minimize the state estimate error e, , the
output estimate error y, converges to f, which guarantees
fault identification as well as

y, = cg(()l!iff)n‘z}gnﬂ(cgeg +fg) zfg (13)

It can be seen that Eq. (13) belongs to a single-
object optimal problem which can be easily achieved.
The dynamical observer function in Eq. (12) is now
given which can be represented by the following stand-
ard form

é, = Ae, + 10, _13][fé'] (14)
I, 03 03 g
1= [ele [y o] 0o

where
v, =K. (s)(y, -5,)
z, = e, =x, - %X,

The following theorem gives the observer asymp-
totic convergence result on fault identification problem
of the spacecraft gyros:

Theorem 2 For the observer given by Eq. (10)
along with y, is an optimal residual generator for the
gyro fault diagnosis problem if the dynamical gain
K, (s) € RH, (the set of controllers solving the H,
optimal control problem with the minimum possible y)
exists.

3 H_ Optimal Fault Observer for Star Sensor

The fault diagnosis architecture of the star sensor

basically resembles the gyro. However, it is important
to note that the following assumptions are taken for the
observer’ s design of the star sensor.

Al The fault f, is sectionally continuous.

A2 The measured value always satisfies normali-
zation condition even though faults happened. That
means

Z(q,f+ﬁ,;)2+q3 =1 (16)

A3 . When the estimate error of the angular rate
exists and keeps bounded by Eq. (10), the estimate of
the angular position here also remains of errors and
bounded. Consequently, there is a real number « such
that

le s = %, -% .<alx -% |, (7)

A4 There exists a positive number a, such that
@, (x,) satisfies a Lipschitz condition i. e.

I ®.(x) - D (X)) |, <o llx —%|,(18)

Remark 1 Al provides a guarantee that the
form of star sensor faults can be described by mathe-
matics. A2 satisfies the fault dimension equivalence
between the Euler angle and the unit quaternion. Tak-
ing the gyro observer diagnosis uncertainty and system
nonlinearity into consideration refer to A3 and A4 when
we design the star sensor observer.

Based on above assumption and according to Eq.
(5), the fault observer of star sensors proposed falls in
the class of the Luenberger-like observer, namely
£ =A(2)% +E(£)® (%) +K (s)(y, -F)
y, = CX, (19)
where £, replaces x, in matrices A (£,) and E_v(.f:g) in
view of the inequality between measured value y, and
real states x, considering the gyro fault may happen at
all times. Thus matrices A (£,) and E (£,) can be
expressed as

A(£) = A(x) + 4,
E(%) = E(x,) +4, (20)
with A, = —%[e;] A, = %diag(eg).

According to A3, there exist positive real numbers
a, and ay; such that above matrices satisfy a local Lips-
chitz condition

TAl = [14,(x,) —AR) ||, <allx -% |,
IAull> = I E(x,) -E(,) [, sagllx =% |,

(21)
Also definee, = x, — X andy, =y, - J. From
Eqgs. (5), (19) and (20) that

é, = A(x,)x +E(x,)® (x) -A(£,)X -
E(£,)D (%) - K(s)(Ce, +f) = [A(%,) -
K (s)C le, - K (s)f +A,.

y. =Ce, +f. (22)

A, =E(2)[D(x) -D(2)] +[A% +

A,D,(%,)]
. 125 -
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Since @ (x,) ,A, and A, all satisfy the Lipschitz
condition according to A4 and Eq. (21), E(x,) ,%,
and @ (£,) are obviously bounded. We deduce that
A, corresponds with Lipschitz condition as well

A 2 < o 1%, =%, (23)
where o, 1s a positive real number.

The following lemma from Ref. [ 19 ] gives the as-
ymptotic convergence condition of the H_ observer.

Lemma 1 The observer gain K, (s) stabilizes the
error dynamics for all A, with a Lipschitz constant
0 I K () is chosen so as to ensure that it can be re-
lated to the H theory such that

U1 [ T () ) < == (24)

total

Citing Lemma 1, above fault problem looks more
complicated because it needs the designed observer not
only to minimize the state estimate error, but also to
guarantee some robustness suitable for uncertainties.

Defines, & [7,, 7,]" = [A.a f.]7, it can
be seen that the dynamical observer function in Eq.
(22) is now given which can be represented by the fol-
lowing standard form

¢ =Ae + (L 0] —rl["] (25

[0, 0,] o,

o, 1] o (7] @6

s

v, = K(s)(y, -5
z, =e =Xx, —X.
Finally, the following theorem describes the fault
diagnosis problem of the star sensor as
Theorem 3  Given system (5), the residual y,
achieves the fault diagnosis if the dynamical gain K (s)

e RH,, exists and satisfies | T, 4 1 I. < and
S total

total

| T, || . the minimum possible.

4 LMI Design Procedure for G&S

Before LMI design, we reconsider the model of
the dynamics Eq. (4). In practice, symmetric inertia
matrix J exist some uncertainty A,. In addition, the
disturbance torque supposed due to the gravity-gradient
is non-ignorable. Hence, we assume uncertainty item
¥(x,,A,,x,) also matches the Lipschitz condition and
the dynamics is rewritten as follows

¥, =Ax, + ¥(x,,A,,x,) +Bu
y, =Cx, +f, (27)

Define 7, & [Tgl ng]T = [llf(xg,A,,xs) fg]T

and the standard form is rewritten by

e'g = Ageg + [ [ 031 —I3][:g] (28)

- 126 -

[Zg]: [13]8,4_[[03 03] 03][Tg] (29)
YV, ¢l Lo, L] olly,

Egs. (25) = (26) and Eqgs. (28) - (29) all sat-
isfy a uniform structure so that we can design the ob-
server of the gyro and star sensor together (omit sub-
script g and s) and the general plant can be given as

A L 0] -1,
G(s) =|I, [0; 0] 0, (30)
c [0, L] o,

As stated in Theorem 2, minimizing || T, || .. pos-
sible can be modeled as a weighted H_ problem solva-
ble using the dynamical observer formulation and then
the followiAng two statements are equivalent

(1) Tef(jw)A = 0.

(ii) W(s)T,(jw) € RH,,. (31)

According to Theorem 3, we know the scheme be-
longs to a kind of H_, multi-evaluation problem. In or-
der to balance such two-objective values, a positive
scalar g is used with the second objective such that

el Ws)T, | <1V (32)

It then follows that || T, || , and || T, || ,, can be

combined in a uniform framework, and with the weigh-

ting W(s) defined as follows

A, B,
W(s) = [Cw Dw] (33)
It can be seen that the augmented plant G(s) is
given by
AR e Y
- 0, A I, o, 1
G(s) = (34)

[0, 1} [0 O] 0,
[¢eC, C] [0, &D,] 0,
Given faults are low frequency signals, A, ,B,_,
C, and D are designed as
A, = Diag;(-¢),B, =1,

C, = Diag;(b — ac), D, = Diag,(a) (35)
where the positive number b is related to the fault upper
frequency w,,, ; positive a and ¢ are both small numbers
which guarantee LMI solvable.

Based on the previous results, the following theo-
rem summarizes the sensor fault diagnosis problem .

Theorem 4  Given the observer form like Eq.
(19), there exist optimal residual y estimating the fault
of G&S according to theorem 3, for all uncertainty A
satisfying with a Lipschitz condition iff 3¢ > 0 and a
controller K(s) design by Theorem 1 satisfying

1T, . < L for the structure where G(s) has the
«

®©

state space representation in Eq. (34).
5 Robust Residual Evaluation

In practice, there are usually such a great number
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of unknown inputs that, in the face of mismatching the
Lipschitz condition, a complete decoupling from all un-
known inputs is hardly achievable. Hence the residuals
or any decision functions built from them always devi-
ate from zero even if no fault is present. In this case,
robust residual evaluation is the only way to keep the
false alarm rate small with an acceptable sensitivity to

47160 4o analyze

faults. Here, we adopt H, approach'
the robustness of the designed gyro observer in frequen-
cy domain.
ds ] ! €
R’, so the dynamics of ACS is rewritten such as
X, =Ax, +Bu+d
y, =Cx, +f, (36)
Follow Egs. (10) and (36) that we acquire

transfer matrices from d or f, to y, as

y, =T, d+Tf, (37)

Consider unknown inputsd = [d, d,

where
r,=cC.(sl; —A)™"
I, =C,(sI; -A) 'K, (s) +1,
A :Ag+Kg(s)Cg B
According to Section 5, we know that A has been
stabilizing, hence a dynamics of residual evaluation is
governed by
r(s) = R(s)(I'yd + I'f,) (38)
where R(s) e RH.™" is called post-filter. In case that
a full decoupling is not achievable, the design goal is
to find a residual generator such that the H, perform-
ance index J,, becomes minimal. Using Eq. (37), J,,
can be express as
: [RCs)T, |l »
T = R()HT, |, (39)
The minimization leads to a generalized eigenval-
ue-eigenvector problem i. e.
pliw) [ (I')(iw) ] (iw) - o,,(0) (o) -
I'f (iw)] =0 (40)
0,.(w) and p(iw) are, respectively, the minimal
generalized eigenvalue and corresponding eigenvector.
The solution to this problem in the frequency domain fi-
nally yields
R, (s) =f,(s)p(s),
o = igfomin(a)) (41)

and w, is the frequency at which o,

i (@) achieves its
minimum. f, (s) denotes an ideal frequency-selective
filter at w,, which can be replaced by a narrow band
filter
As?

§) = ————
fwo( ) (S +w0)2ﬁ

where positive number A determines the magnitude of

(42)

the signal and integer B are used to adjust a desirable
bandwidth.

In general, a conservative threshold'™*' can be,

according to Eq. (37) , established as follows
J, = 2/511(}) Ir(s) |l » (43)

and the robust fault detection and isolation problem of
the gyro observer for unknown inputs can be expressed
by
| 7(s) || , < J, — sensor fault-free
| r(s) || , = J, — sensor faulty (44)

6 Compensation PD Fault-Tolerant Control

In the previous sections, the FDI architecture on
G&S has been represented. Their residuals y, and y, as-
ymptotically converge to fault vectors f, and f, respec-
tively. Hence, through measurement values minus
their residuals, a compensation PD ( CPD) feedback
controller is given as follows

u=K(@, -y)+K,(y,-y,) (45)
where the controller parameters K, and K, can be de-
duced using the root locus analysis. We set CPD open
when residual evaluation r climbs across the threshold,
otherwise a general PD controller acts. Fig. 1 illustrates
the structure of the close-loop system including space-
craft plant, fault diagnosis subsystem and CPD control-
ler.

d i t .
" v | Gyo |7
Dynamics Gyro yro | Y.
- observer
f -
‘ Star 7,
Kinematics Star }f sensor
inematics Senst .
u pam
PD/CPD

Fig.1 Structure of cascade observers and control system
7 Simulation Results and Discussions

In this section, the spacecraft simulation involves
an earth orientation attitude regulation. Here we con-
sider system existing actuator disturbance signals, G&S
noises and assume them as white noises whose standard
deviations are denoted by ¢. With reference to Ref.
[20], the parameters of the simulated rigid spacecraft
and circumstance including model uncertainty and un-
known inputs are given in 0To conquer both uncertain-
ties and disturbances, a suitable parameter & can be
selected e. g. by simulation tests or application experi-
ences.

In the benchmark, a couple of fiber gyro and star
sensor are addressed and then two typical faults in

« 127 -
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practice are listed in OSimplifying the results, here two
scenarios including a periodic additive fault of fiber
gyro and a constant additive fault of star sensor are
shown to illustrate the performance of FDI/FTC system
when operating together.

Scenario 1 Gyro and star sensor faults simulta-

=30 (s) as
0.4
H
0.6

neously occur at time ¢
0. 05sin(0. 1¢)

f. = [O.OISin(O. 5t + w/4) |(vad/s) , f, =
0.03 +0.01sin(¢)

Tab.1 Model parameters and value

Symbol Quantity
55.30 0.21 0.41
J = [0.2] 51.50 —O.34](kg'mz),crg =2x10"*(rad/s)
0.41 -0.34 41.80
27. 6sin(0. 02¢) 0. 105co0s(0.01¢) 0. 205sin(0. 02¢)
[o 105¢0s(0.01¢)  25.7cos(0.02t) - 0.17cos(0.01¢) | (kg - m*)
SP, MU and UL 0. 205i1n(0 02t) -0.17cos(0.01z)  20.9sin(0.02¢)
0, —0.001 01" (rad/s), Qyiiw = L0 0 017 (rad/s)
G = L1 0 0 017,00 =2x10"",0, =0.7 (uN - m)
-4 +5c0s(0.012)
d = [ 4 + 3sin(0.01z) ]X 107 (N +m)
-4 +4sin(0.01z)
WP, FP b=5 a=1x10"°, ¢c=1x102,1=8,=2, =1x10?
CPD , =150, K, =100

SP: spacecraft parameter; MU: model uncertainty; Ul: unknown input; FP: filter parameter; WP; weighting parameter

Tab.2 Two typical faults of G&S

Component Abnormality Failure cause Faulty form

Attitude information Timing generator A constant

Star sensor

locked abnormal additive fault

. Light power Constant-current A periodical
Fiber gyro X

’ unstable source unstable  fault signals

To illustrate the performance and the feasibility of
two H_ fault observers and CPD controller, fault esti-
mates, errors of fault estimates, the control torque, the
angular rate and angular position are presented from
Figs.2 to 8. G&S fault estimates and their errors in

scenario 1 are plotted in Figs.2 —5.

0.02 T T T T :
-0.02r \/
” —0.06 I n n L L
= 0 10 20 30 40 50 60
E
g 001 1
00 . . . ]
E 0 10 20 30 40 50 60
-~
0.01f ' ‘ ' ' ' 1
0 7
-0.01t . . 1 . . b
0 10 20 30 40 50 60
t/s
— Gyro faults - - - - Estimates
Fig.2 Gyro faults and Estimates in Scenario 1

. 128 -

We can see that each error of the G&S fault vector
converges to a small set around the zero point with
noise order and maintains still bounded in this area e-
ven though G&S dual faults occur. In addition, the re-
sults also verify that the cascade observers in design
have the robustness with respect to model uncertainties
and unknown inputs.

04F
02} 1
0 §

0.6 : : : : '

02F 1

Star sensor faults and estimates

0.6f
04f 1
027 1
0 . . . . ‘ J
0 10 20 30 40 50 60

Gyro faults - - Estimates

Fig.3 Star sensor faults and estimates in Scenario 1

Based on the support of above accurate and delay-
free diagnosis results, CPD controller can rapidly elim-
inate the impact of G&S faults on ACS. Different to Bi-
as-Separated Filters”>' | the new cascade structure is

totally independent on star sensor signals so that it is a-
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ble to identify gyro faults and star sensor faults simulta- 2 - - " " :
neously. In fact, a perfect identification of G&S fault 0 A~ ,\/\
in this framework relies on the accurate input signals. _
It is wel'l-known that in the space environment, the' un- ,% 24 T 20 0 m & N
known inputs and disturbances are usually relatively £ 5 :
. . . (=]
weak compared with control inputs. Therefore, it X 0 V
shows that the above cascade observers can be designed 2 -5 1
. . . 2 10 : : 5 y .
an(.i achlevet?l. Finally, we plot real angul:.:lr V1.31001’[y, S T 50 50 o = e
unit quaternion and control torque of ACS in Figs. 6-8 510 ' ' y y '
respectively to show the effectiveness of this FDI/FTC. %05 1
< 0 Ve
5 _0.5 1 1 1 1 1
0 10 20 30 40 50 60
~ 0 t/s
—é -5 Fig.6 Real angular velocity in Scenario 1
+ 0 10 20 30 40 50 60
(=]
S
3 s 1.0
S o 051 s . . . : ]
. 0 x10+10 20 30 40 50 60
-5 2 y T J E 7
é 0 10 20 30 40 50 60
5 /\/—_H_‘_—
= PR~ . . , .
E 4 g
) -3 0 10 20 30 40 50 60
. g %107
&) g | 0 T
-4 S \ 1
L ' : : : .
0 , 10 20 30 40 50 60
x10™
1.0 ) ) ) j )
0 10 20 30 40 50 60

tls

Fig.7 Real quaternions in Scenario 1

0.01 : . :
0 [\' V\
-0.01f 1
0

|
W

~0.02 . . . .
= 0 10 20 3 40 50 60
£ ol
g
= of
g
= 0 . . ] . .
s 0 10 20 30 40 50 60
S x107
C 5
0 10 20 30 40 50 60 0L F i
tls
0

o

10 20 3
t/s

Scenario 2  Only gyro fault occurs at time ¢ = Fig.8 Control torques in Scenario 1

30 (s) but this time its magnitude becomes as weak as

Fig.5 Star sensor fault estimation errors in Scenario 1 40 0 60

unknown disturbances d.: Relationship between J and w is presented as nu-

—4 +5cos(0.011) merical analysis using the H, approach. Fig.9 demon-
fi=d =1 4 +3sin(0.01) |x 10~ (rad/s) strates the performance index J becomes smaller and
— 4 + 4sin(0.011) smaller with the increase of frequency and it is obvious-

ly logical because transfer matrix I", has direct output

« 129 .
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but I", not. However, selecting an excessively high fre-
quency may lead to miss detection correspondingly
when filters weaken low frequency information of gyro
faults as the same as unknown inputs. Therefore, a
suitable trade-off between the sensitivity to sensor faults
and the robustness to unknown inputs is necessary in
practice. Here according to Fig. 9 and the frequency of
faults, we select w, = 1 as the center frequency of the
band filter and its parameters are also listed in 0.

W77 71 7 71 T T

wl(rad*s™)

Fig.9 Relationship between frequency and performance

Residual ¥ and its threshold in Scenario 2 are both
shown in Fig. 10, which shows that the impact of gyro
fault is totally covered below the threshold such that
miss detection occurs. Compared with the results in
Fig. 10, Fig. 11 shows that the filtered detection resid-
ualrin the pitch and yaw axis well crosses the threshold
indicated by the dashed lines. This comparative experi-
ment means the size of minimum detectable faults for
cascade observers has been minimized and robust diag-
nosis achieved.

Residuals y and thresholds J,/(x1 07rades™)
(=)

Fig.10 Residuals and thresholds without filtering
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Fig.11 Residuals and thresholds with filtering

8 Conclusions

A new cascade H_ observer design for the Attitude
control system of spacecraft is proposed and applied in
the gyro and star sensor fault diagnosis problem. This
method, which is derived from H_ design problem can
solve G&S simultaneous fault problem in the condition
of existing uncertainties. The use of robust residual for
unknown inputs is demonstrated and the CPD controller
is applied to ACS. A systematic design procedure that
can be carried out using Matlab/Simulink software is
presented. Simulation results demonstrate the effective-
ness and feasibility of the proposed fault diagnosis and
fault-tolerant control algorithm.
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