
Int J Software Informatics, Vol.2, No.1, July 2008, pp. 17–31 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics ISSN 1673-7288 http://www.ijsi.org

2007 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

Achieving Flexibility in Off-the-Shelf Middleware

Services Integration∗

Yan Li, Minghui Zhou, Donggang Cao, Lu Zhang, Hong Mei

(Software Institute, School of Electronics Engineering and Computer Science,

Peking University, China)

(Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of

Education, Beijing 100871, China)

E-mail: {liyan05, zhmh, caodg, zhanglu}@sei.pku.edu.cn, meih@pku.edu.cn

Abstract The development of component-based software engineering enables the con-

struction of application servers by integrating reliable OTS middleware services. However it

is difficult to achieve flexibility in conventional hard coding way. In this paper, we propose

a flexible OTS middleware services integration framework to address this problem. In this

framework, we define two kinds of modules: the middleware service contract module to repre-

sent the stable contract which specifies the abstract interaction logic between the application

server and a kind of middleware services, and the middleware service implementation module

to encapsulate the mutable implementation details of different OTS middleware services in

a unified way. Additionally, we propose a module management mechanism to enable the

application server to replace the OTS products at runtime via configuration. We implement

the framework in a J2EE application server, and the evaluations show that our framework

effectively reduces the cost and the time of maintaining and customizing the OTS middleware

services-based application server.

Key words: flexibility; middleware service; integration; off-the-shelf

Li Y, Zhou MH, Cao DG, Zhang L, Mei H. Achieving flexibility in off-the-shelf middle-

ware services integration. Int J Software Informatics, 2008, 2(1): 17–31. http://www.ijsi.
org/1673-7288/2/17.pdf

1 Introduction

Until now, J2EE application servers are becoming gigantic and complex like never

before. Take RedHat Jboss[1], a widely used Java application server, for example, the

size of it has increased three times (from less than 30MB at version 3.0.0 to more

than 100MB at version 5.0.0), and the number of middleware services it provides has

reached to 20, most of them are complex, such as EJB/Web container and transac-

tion service. Component-based software engineering[2] is a good solution to optimize

* The research was sponsored by the National Grand Fundamental Research 973 Program of China
under Grant No.2002CB312003, the National Nature Science Foundation of China under Grant
Nos.60603038, 60503029, and the National High-Tech Research and Development Plan of China
under Grant Nos.2007AA01Z133, 2006AA01Z156, 2006AA01Z189.
Corresponding author: Minghui Zhou, zhmh@sei.pku.edu.cn
Manuscript received 28 Sept. 2007; revised 4 Jul. 2008; accepted 28 Jul. 2008; published online 1
Aug. 2008.



18 International Journal of Software and Informatics Vol.2, No.1, July 2008

the time and the cost of the application server construction, therefore rather than

enabling all the features themselves, more and more application server vendors are

inclined to selectively implement some middleware services on the one side, such as

the EJB container, and to integrate some reliable Off-the-Shelf (OTS) middleware ser-

vices on the other side, such as ObjectWeb JOTM[3] for transaction service, Apache

Tomcat[4] for Web container, which is called OTS middleware service integration.

(In the context of this paper, we use the terms “OTS middleware service”, “OTS

product” interchangeably.)

However, conventional integration approach usually hard codes the concrete OTS

middleware services. Because the OTS products are continually evolving by third-

parties, hard-coding approach will burden the application server developers with oner-

ous maintenance work. Take Apache Tomcat for example, it has released 22 different

versions containing 4 milestones from late 2004 to 2007.A minor change of the in-

tegrated OTS product demands the developers to review and modify all the related

codes scattered in the application server, and either the large scale of related codes

or the deficiency of development document make the maintenance harder. Moreover,

the application servers are bound with fixed OTS middleware services, which can not

meet the various needs of different applications. For example, sometimes the speed of

transaction service is their first concern, while sometimes it is better to choose a slower

but less memory consumed one. For these reasons, it is very difficult to achieve flexi-

bility in the construction of application servers through assembling together different

OTS products.

Flexibility relates to the range of possible changes that can be supported by a

platform[5]. In the OTS middleware service integration, flexibility can in turn be

refined into the requirements supported by the application server: (1) ease of modifi-

cation for the evolvement of OTS products; (2) ease of OTS products substitution.

To address the flexibility, we propose an OTS middleware services integration

framework. According to the information hiding principle[6], we define two kinds of

modules: the middleware service contract module to represent the stable contract

which specifies the abstract interaction logic between the application server and a

kind of middleware services, and the middleware service implementation module to

encapsulate the mutable implementation details of different OTS middleware services

in a unified way. Additionally, we propose a module management mechanism to enable

the application server to replace the OTS products at runtime via configuration.

The main contributions of this framework are as follow. First, we implement

the framework in a J2EE application server called PeKing University Application

Server (PKUAS)[7] to demonstrate its feasibility and effectiveness in constructing the

complex application server. Second, it effectively reduces the cost and the time of

maintaining the OTS middleware services-based application server. Through compar-

ing two versions of PKUAS (with and without the framework), we found the numbers

of classes needed changing during the modification or substitution of OTS products

have been greatly reduced (the best result is from 53 classes to 5 classes). Third,

it allows the application server vendor rapidly customizing the application server to

better meet the diverse application requirements through configuration.

The rest of the paper is organized as follows: Section 2 introduces the integration

framework. Section 3 describes the implementation of the framework in PKUAS.



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 19

Section 4 gives the evaluation of this framework. Section 5 summarizes the related

work. Finally, section 6 concludes the paper and discusses the further work.

2 The Middleware Service Integration Framework

The goal of the integration framework is to achieve flexibility in the middle-

ware service integration. David Parnas has discussed in[6,8] that modularization is a

mechanism for improving the flexibility in complex system construction, and the only

assumptions that should appear in the interfaces between modules are those that are

considered unlikely to change. So to achieve this goal, the diverse middleware service

implementations should be modularized in a unified form, which not only to hide

the implementation details, but also to enable the application sever to manage (e.g.

load, configure, and so on) them through unified operations. Besides, explicit and

stable contracts for invoking the middleware services should be defined to decouple

any product implementation-specific logic from the logic of the application server.

The framework overview is shown in Fig.1. Each middleware service implemen-

tation is wrapped in a unified form: middleware service implementation (abbr. MSI)

module (Section 2.1.1). To avoid tangling the product implementation-specific logic

with the logic of the application server, the framework defines a contract for each

kind of middleware service, and encapsulates it into the middleware service contract

(abbr. MSC) module (Section 2.1.2). The dependencies among middleware services

should comply with the contracts. The module management mechanism (Section 2.2)

is responsible for loading, instantiating, registering the MSC modules, and configur-

ing the appointed middleware service implementation for each kind of middleware

services (MS Manager). The runtime behaviors of the framework are described in

Section 2.3.

Figure 1. Framework overview



20 International Journal of Software and Informatics Vol.2, No.1, July 2008

2.1 Modules

2.1.1 Middleware Service Implementation Module

Each middleware service implementation module (abbr. MSI module) corre-

sponds to a middleware service implementation. It is composed of a set of adapters

and one middleware service implementation, shown in Fig.2.

Figure 2. The structure of middleware service implementation module

As the middleware service contract (Section 2.1.2) may differ from the APIs of

a middleware service implementation, adapters are employed to adapt the APIs to

the contract. Because the APIs (of an OTS product) only describe the functionality

of the component and provide no insights for adapting the component[9], the appli-

cation server developers need first to do an operation mapping between the contract

interfaces and the API. We classify the issues occurring during the mapping prac-

tices into three kinds of mismatch named name mismatch, function mismatch, and

function deficiency. The definitions are listed in Table 1. According to the map-

ping results, different adaptation strategies are employed: As for name mismatch, the

adapter directly forwards the invocation to the corresponding OTS product’s API.

As for function mismatch, the adapter either wraps the API (e.g., add the pre/post

processing parts) or invokes the related APIs in a sequence. As for function deficiency,

the adapter must implement the function itself.

Table 1 Three kinds of mismatch

Kind Definition

Name mismatch The API rightly corresponds to the operation M in the contract,

but only the names of the operations do not match.

Function mismatch The API is incomplete to the operations in the contract, e.g., applica-

tion server has to do pre or post processing for the operations in the

contract. Or operation M in the contract should be implemented by a

sequence of the operations in the APIs.

Function deficiency No operation in the API supports operation M in the contract.

The MSI module brings two advantages: first, it hides the complex details of

various middleware service implementations from other parts of the application server,

by wrapping it to a separate module. Second, it reduces the maintenance workload

of the OTS middleware service integration, by confining the possible changes to the

adapters whenever the third parties upgrade their products.

2.1.2 Middleware Service Contract Module



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 21

Each middleware service contract module (abbr. MSC module) corresponds to a

kind of middleware service. It is composed of an entry component, a metadata file,

and a set of contract interfaces for this kind of middleware service, shown in Fig.3.

Figure 3. The structure of middleware service contract module

The contract interfaces are defined by the application server developer from the

perspective of the application server rather than a concrete OTS product, that is, the

contract interfaces exactly cover the functionalities required by the application server

to invoke and control this kind of middleware service, while reveal little about the

concrete implementation. When defining the contract interfaces, application server

developers had better first investigate the specifications related to this kind of middle-

ware service. If the Service Provider Interface (SPI) has already existed, the contract

interfaces should be consistent with it. Then, the developers define the application

server specific operations for this kind of middleware service. Until now, the major-

ity of SPIs have not been thoroughly prescribed: they may either scatter in several

specifications or even not be defined. It is recommended that the developer should

be careful when defining server-specific operations, because it may not be supported

by all the OTS products, which eventually brings much burden to the adapter im-

plementations. The evolutions of the specifications and the application server itself

may result in the modification of the contract interfaces, but they are considered to

be stable most of the time.

As the entrance of the MSC module, the entry component is responsible for not

only instantiating the configured MSI module via the Java reflection mechanism, but

also routing the invocations between the MSI module and other parts of the applica-

tion server. On the one hand, the entry component implements some of the contract

interfaces (PContract), and processes the requests from the external modules through

invoking the configured MSI module. On the other hand, the entry component ex-

presses the required contracts (RContract) of this kind of middleware service, and

forwards the requests of the MSI module to the external modules.

The metadata file contains the name of the MSC module and the implementation

class of the entry component, the contract interfaces it provides and requires, and the

component properties (e.g., the properties about the OTS product).

The MSC module brings two advantages: first, well defined contract interfaces

release the application server from headachy integration maintenance whenever the

OTS products update. In the conventional hard-coding integration, the developer

had to review and modify each part depending on the OTS product in the applica-

tion server, which is not only time-consuming but also error-prone with the increasing



22 International Journal of Software and Informatics Vol.2, No.1, July 2008

number of OTS middleware services (think of 5 OTS middleware services and each

with average 20 related parts in the application server), and the constantly growing

size of the application server (think of 1000+ classes which is ordinary for some pop-

ular application servers, e.g. Redhat JBoss). In contrast, now the application server

interacts with the OTS products through the relative stable contract interfaces. The

adapters, which implement the contract interfaces in an MSI module, instead of the

whole application server need to be modified along with the OTS products update.

That is, the scale of modification is effectively reduced. Second, through organizing

the contract interfaces into a separate module rather than combining with the mid-

dleware service implementations, it alleviates the work of OTS middleware service

substitution to a large extent. The application server no longer binds to a specific

one at its code level but to the MSC module, and the Java reflection mechanism

employed in the entry component makes it possible to substitute the OTS product

via configuration at runtime, rather than modify a great deal of classes and restart

the application server.

2.2 Module Management Mechanism

The framework contains several components to execute the management tasks:

the loader loads the classes of the MSI and MSC modules; the MSCM (Middleware

Service Contract Module) Instantiators instantiate the entry components in the corre-

sponding MSC modules; the registry processes the instances registration and lookup

issues; the MS (Middleware Service) manager is in charge of configuring the mid-

dleware services; the console is used to receive the commands from the application

server administrator, such as replacing an existing OTS product with another one at

runtime, and then the console forwards the commands to the MS manager.

The configuration file prescribes the specific OTS middleware services to be used.

For each kind of middleware service, the configuration should specify the name of the

middleware service’s entry component, the property values of the entry component,

and so on (refer to List.3 for more details). Generally, there is a default configuration

file.

2.3 Framework Runtime Behaviors

To make clear how the framework works, we illustrate two types of runtime

behaviors of the framework in this section: the behaviors when bootstrapping and

the behaviors when substituting an OTS product.

At bootstrap, there are seven steps, as shown in Fig. 4:

1. The loader loads every MSC module (step 1.1), creates an MSCM Instantiator

for it (step 1.2). The MSCM Instantiator will register itself with the name of

the MSC module to the registry in order to make the MS manager find them

(step 1.3).

2. The MS manager parses the configuration file and stores the configuration (step

2).

3. To instantiate the entry component in each MSC module, the MS manager first

looks up the module’s MSCM Instantiator from the registry (step 3.1), and asks

factory to create an instance of the entry component (step 3.2∼3.3).



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 23

4. The MS manager configures the MSC module with the configuration loaded in

step 2, that is, the instance of the entry component is notified with the appointed

OTS product at that time. This is achieved by setting the properties value to

the instance (step 4).

5. After configured, the MSC module requests the loader to load the appointed

MSI module (step 5). If the MSI module is successful loaded, the MSC module

is valid, that is, it can be used by other MSC modules.

6. As the instance of the entry component registers itself with its provided contract

to the registry, so that the registry could inject it to the other entry components

that require this contract (step 6).

7. At last, the registry binds the MSC modules according their provided and re-

quired contract (step 7). Dependency injection[27] technique is employed here.

At runtime, the middleware service invokes each other via the predefined con-

tract interfaces, and the entry component forwards the invocation to the ap-

pointed OTS product.

Figure 4. Runtime behaviors at bootstrap

When the application server administrator needs to substitute an OTS product

due to the variation of the application requirements, the following steps are executed,

shown in Fig. 5:

1. After the administrator configures a new OTS product from the console, the

console calls the MS manager (step 1).



24 International Journal of Software and Informatics Vol.2, No.1, July 2008

2. The MS manager looks up the component instance of this middleware service

(step 2.1), and configures the component instance with the new configuration

(step 2.2).

3. The MSC module requests the loader to first load the new MSI module (step

3.1) and then to unload the old MSI module (step 3.2).

4. Right after the MSC module becomes valid again, the registry binds it with

other MSC modules.

Figure 5. Runtime behaviors when substituting an OTS product

3 Implementation

PKUAS, developed by Peking University, is an open source J2EE-compliant ap-

plication server[10]. It develops some middleware services itself, such as EJB container,

data source and transaction service, while at the same time also integrates some OTS

middleware services, such as ObjectWeb JOTM for transaction service. However, in

its old version, the integration was done in hard coding way, so the logic of PKUAS

itself was interweaved with that of OTS middleware services, which led to two an-

noying problems: first, the high maintenance cost of the integration which has been

discussed in Section 2.3. Second, the customization deficiency: nowadays applications

often want to customize the kinds and the implementations of middleware services

to exactly fit their needs, rather than accept all the features that the vendor pro-

vides. However, as specific OTS middleware services were hard coded in PKUAS,

implementations substitution is not supported.

Due to the problems, PKUAS has implemented the integration framework, shown

in Fig. 6. The module management mechanism is implemented in its kernel. The mid-

dleware service implementations, ObjectWeb JORAM[11], Codehaus ActiveMQ[12]

and SONIC OpenJMS[13] for message service, PKUAS Transaction, ObjectWeb JOTM

for transaction service, and Apache Tomcat and Mort Bay Consulting Jetty[14] for



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 25

Web container, and PKUAS EJB container, are encapsulated in MSI modules respec-

tively. Besides the classes of the OTS product, one MSI module also contains the

adapters developed by PKUAS for this OTS product. These adapters implement the

contract interfaces to allow the MSC module invoking this OTS product when receiv-

ing requests coming from other middleware services, such as EJB container. For each

kind of middleware service, PKUAS develops an MSC module. Each MSC module

contains three parts: the contract interfaces, the entry component, and the metadata

file. To give a concrete view of the MSC module, we take the transaction service for

example to describe each part of MSC module, which is similar to other MSC module.

Figure 6. Framework overview in PKUAS∗

As the contract interfaces should be consistent with the specifications, the trans-

action contract interfaces are derived from the Java EE 5 and the Java Transaction

Service (JTS)[15] specification. The entry component implements the interfaces as its

PContract (See Section 2.1.2) for other middleware services. List.1 is the contract

interface for transaction service. However, other middleware services (e.g. message

service) may have more than one contract interfaces.

∗ For the clarity and the space limited, only the dependencies between EJB container and other mid-

dleware service are shown in this figure, however, there are many dependencies between middleware
services, such as data source service depends on transaction service.



26 International Journal of Software and Informatics Vol.2, No.1, July 2008

List. 1. Transaction service contract interface

List. 2 is the metadata file for the transaction service contract module. Most of

the metadata files are comprised of three parts: the class of the entry component must

be declared with the ¡component¿ tag; The PContract and the RContract are marked

with ¡provides¿ and ¡requires¿ tags respectively, and the RContract is optimal; The

properties used to configure the OTS product, if exist, could be announced with the

¡property¿ tag. Besides the property’s name, the method used to set the property

should be given.

List. 2. Metadata file in the MSC module

Additionally, to make the application server forward the invocations to the ap-

pointed OTS products, the administrator could configure the pkuas.xml configuration

file. List. 3. is a snapshot of transaction service configuration in pkuas.xml. It em-

ploys the class name of the entry component to denote the middleware service, and

the values of the properties for the appointed OTS product are given. MS manager

parses this file, and then the boundary of the application server is determined at

runtime.

List. 3. PKUAS configuration file



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 27

4 Evaluation

In this section we first present an evaluation of the integration framework with

respect to the flexibility discussed in Section 1. After that, we analyze the performance

overhead of the framework in PKUAS.

4.1 Flexibility

As defined in the introduction section, the flexibility is the requirements of ease

of modification for the evolvement of OTS products and ease of OTS products sub-

stitution. in the OTS middleware service integration. Both when modifying and

substituting, the application server developers have to at least change all the classes,

which refer to the OTS product’s API and scatter in the application server. So we

use this number of classes, named NC,
to measure the workloads of modification and

substitution, that is, the flexibility.

In our evaluation, we compare the new PKUAS (PKUASN) with our original

PKUAS (PKUASO) which hard codes a set of specific OTS products to comply with

J2EE specification. Besides, to show the usage of the OTS products in original

PKUAS is reasonable, we also count the corresponding NC in a well-known open

source application server ObjectWeb JOnAS v4.8[16], which also use these middleware

services. The NC of three OTS middleware services, which are ObjectWeb JOTM for

transaction service, Object JORAM for message service and Apache Tomcat for web

container, in the three application servers are shown in Table. 2.

Table 2 Numbers of classes referring to OTS middleware services

ObjectWeb JOTM ObjectWeb JORAM Apache Tomcat

PKUASO 53 9 14

JOnAS v4.8 40 11 18

PKUASN 5 3 1

As shown in the table, the numbers of classes to be changed during modification

and substitution have been greatly reduced. Because the MSC modules separate the

application server from the concrete OTS products, only the adapters in the MSI

module will use the specific OTS products’ APIs, thus NC in the new version is

decreased to the number of adapter-related classes. Consequently, the application

server developers just need to maintain the adapters whenever the OTS middleware

services evolve, and can substitute an OTS middleware service by simply modifying

the configuration.

4.2 Performance Overhead

As this integration framework inserts a set of intermediary entities (the entry

components and the adapters) into the middleware service invocation process, it in-

troduces a performance overhead into the application server. To analyze the overhead,

we compared our original PKUAS application server with the new version by some

performance tests. (Tests were performed on a Dell Precision 410 MT pc equipped

with 1G Mb RAM and an Intel Pentium4 processor rated at 2.5G Mhz; the operating

system was Microsoft’s Windows XP).



28 International Journal of Software and Informatics Vol.2, No.1, July 2008

As mentioned before, Apache Tomcat and ObjectWeb JOTM have been inte-

grated in original and present PKUAS. In the experiments, we ran two test programs,

each of which invoked one OTS product. Because our aim is to examine the perfor-

mance overhead occurred when the OTS middleware services are invoked, we hope

these test programs focus on their target middleware service and avoid interacting

with other application server components. Therefore, for testing the integrated web

container service (Tomcat), we chose Orientware XLinker[17]’s TestEcho web service

as the server-side program, which only use the web container of the application server;

and for testing the integrated transaction service (JOTM), we used the JOnAS Trans-

action Service conformance test suite[18]. Table.3 gives the obtained results.

Table 3 Experimental results

OTS Service Avg. response timeN Avg. response timeO Performance overhead

Apache Tomcat 540 ms 532 ms 1.5%

ObjectWeb JOTM 133 s 129 s 3.1%

As shown in Table.3, about 3% performance is lost in the new version. Com-

paring with the benefits the integration framework brings, we believe the overhead is

affordable.

5 Related Work

Considerable research work[19] has been done in component integration. Yau and

Karim[20] focus on the distributed component integration by proposing a distributed

component framework. Sauer et al.[21] establish a component-based approach to en-

capsulate and wrap the legacy system. Rather than flexibility, interoperability is their

first concern. Instead of constructing an entire integration framework, Min et al.[22]

focus on the connector which acts as an adapter to fill the gap between the candidate

components and the specification of components required. Bastide et al.[23] present

an approach to adapting component structures, but the first step of this approach is

to decompose the component code, which is unfeasible for middleware service inte-

gration.

In current application servers’ community, OTS middleware services integration

is becoming popular. However, the integrated OTS product is generally wrapped into

a component of the vendor-specific framework, while flexibility is not always men-

tioned. Java Management eXtentions (JMX)[24] is a popular framework to construct

the application server: each OTS middleware service is wrapped as a managed bean

component, named MBean, which ensures the application server to manage (e.g. life

cycle management) different kinds of middleware services in the same way. However,

the OTS middleware services are usually hard coded in the MBean which represents

one kind of middleware service, that is, the application server is tightly bound to this

OTS product. Recently, Open Service Gateway initiative (OSGi)[25], which bears

some similarity with our work, emerges as a new framework to modularize the appli-

cation server: each OTS middleware service is encapsulated into a bundle, but there

is still lack of mechanism to separate the application server from the APIs of the

OTS product. Apache Geronimo[26] proposes its own GBean framework which aims

at integrating existing OTS middleware services: each OTS middleware service cor-

responds to one or more GBeans. Its deploy plan is similar with the configuration to



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 29

configure the OTS middleware service, but service-level contract is also not supported

explicitly.

Compared to these work, our framework proposes a MSI module to insulate the

other components of the application server from the implementation details of the

OTS products, and based on the MSC module and module management mechanism,

we realize the substitution of the OTS products through simple configuration. These

make our application server flexible to the product evolution and substitution.

6 Conclusion

In this paper, we presented an OTS middleware service integration framework.

The framework is composed of the middleware service implementation module, the

middleware service contract module and the module management mechanism. The

three parts together hide the complex details of OTS products, and make the OTS

products plug into the application server with less amount of code modification, be-

sides they enable the customization of the OTS middleware services via simple con-

figuration. Through the flexibility the framework achieves, the maintenance and the

customization cost for the application server developers is greatly reduced.

In the future, we are planning to strengthen the framework to allow application

deployers to specify a set of configuration rules to support self-configuration. These

rules will be evaluated at runtime to decide which OTS middleware service should

be bound (e.g. “when the memory is below 512M, switch to PKUAS-Transaction”).

Furthermore, we are combining this framework with OSGi technologies to make the

J2EE application server gain flexibility as well as dynamism.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-

ments on the earlier draft of this paper. We would also like to Xi Sun, and other

members of the PKUAS group from the Institute of Software, Peking University. The

research was sponsored by the National Grand Fundamental Research 973 Program

of China under Grant No. 2002CB312003, the National Nature Science Foundation

of China under Grant No. 60603038, 60503029, and the National High-Tech Research

and Development Plan of China under Grant No.2007AA01Z133, No.2006AA01Z156,

No. 2006AA01Z189.



30 International Journal of Software and Informatics Vol.2, No.1, July 2008

References

[1] JBoss Application Server. http://www.jboss.com/products/jbossas

[2] Szyperski C. Component software: Beyond Object-Oriented Programming. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA (2002).

[3] ObjectWeb JOTM. http://jotm.objectweb.org/

[4] Apache Tomcat. http://tomcat.apache.org/1. Java Platform, Enterprise Edition, http://java.sun.

com/javaee

[5] Parlavantzas N, Coulson G. Designing and constructing modifiable middleware using component

frameworks. The Institution of Engineering and Technology 2007 (IET Softw.2007 ), pp. 113–

126.

[6] Parnas DL. On the criteria to be used in decomposing systems into modules. Commun. ACM,

Dec. 1972, 15: 1053–1058.

[7] Mei H, Huang G. PKUAS: An architecture-based reflective component operating platform. In-

vited Paper, 10th IEEE International Workshop on Future Trends of Distributed Computing

Systems (FTDCS), Suzhou, China, 26-28 May 2004, pp. 163–169.

[8] Parnas DL, Clements PC, Weiss DM. The modular structure of complex systems. IEEE Trans-

actions on Software Engineering, March 1985, SE-11(3).

[9] Heineman GT, Ohlenbusch HM. An evaluation of component adaptation techniques. Proc. of

the 2th ICSE Workshop on Component-Based Software Engineering, 1999.

[10] PeKing University Application Server, http://forge.objectweb.org/projects/pkuas/

[11] ObjectWeb JORAM. http://joram.objectweb.org/

[12] Codehaus ActiveMQ. http://activemq.apache.org/

[13] SONIC OpenJMS. http://openjms.sourceforge.net/

[14] Mort Bay Consulting Jetty. http://www.mortbay.org/

[15] Java Transaction Service (JTS). http://java.sun.com/products/jts/

[16] JOnAS. http://wiki.jonas.objectweb.org/xwiki/bin/view/Main/WebHome

[17] Ge S, Hu CM, Du ZX, Wang Y, Lin XL, Huai JP. A Web service-based application supporting

environment. Proc. of the National Software and Application. 2002. 97-102 (in Chinese with

English abstract).

[18] JOnAS team. Easybeans testsuit, http://www.easybeans.org/doc/testguide/en/integrated/test-

guide.html

[19] Land R, Crnkovic I. Existing approaches to software integration–and a challenge for the future.

Proc. of the Software Engineering Research and Practice in Sweden (SERPS2004). Linkoping

University, 2004.

[20] Yau SS, Karin F. Integration of object-oriented software components for distributed application

software development. Proc. of the 7th IEEE Workshop on Future Trends of Distributed

Computing Systems (TDCS’99). IEEE, 1999, pp. 111–116.

[21] Sauer LD, Clay RL. Rob armstrong, meta-component architecture for software interoperability.

Proc. of the Int’l Conference on Software Methods and Tools (SMT2000). IEEE, 2000, pp

75-84.

[22] Min HG, Choi SW, Kim SD. Using smart connectors to resolve partial matching problems in

COTS component acquisition. Proc. of the Int’l Symposium on Component-Based Software

engineering (CBSE 2004). LNCS 3054, Springer-Verlag, Berlin Heidelberg, 2004, pp. 40–47.

[23] Bastide G, Seriai A, Oussalah M. Adaptation of monolithic software components by their trans-



Yan Li, et al.: Achieving Flexibility in Off-the-Shelf Middleware Services Integration 31

formation into composite configurations based on refactoring. Proc. of the Int’l Symposium

on Component-Based Software engineering (CBSE2006). LNCS 4063, Springer-Verlag, Berlin

Heidelberg, 2006, pp. 368–375.

[24] Java Management eXtensions (JMX). http://java.sun.com/javase/technologies/core/mntr-mgmt

/javamanagement/

[25] Open Services Gateway Initiative (OSGi). OSGi Service Platform Specification. Version 4,

2004.

[26] Apache Geronimo. http://geronimo.apache.org/

[27] Martin Fowler, Inversion of Control Containers and the Dependency Injection pattern. http://ma-

rtinfowler.com/articles/injection.html, Jan. 2004


