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Abstract Autonomous Unmanned Aerial Vehicles (UAVs) have the potential to signifi-

cantly improve current working practices for a variety of applications including aerial surveil-

lance and search-and-rescue. However before UAVs can be widely integrated into civilian

airspace there are a number of technical challenges which must be overcome including pro-

vision of an autonomous method of landing which would be executed in the event of an

emergency. A fundamental component of autonomous landing is safe landing zone detection

of which terrain classification is a major constituent. Presented in this paper is an extension

of the Multi-Modal Expectation Maximization algorithm which combines data in the form of

multiple images of the same scene, with knowledge in the form of historic training data and

Ordnance Survey map information to compute updated class parameters. These updated

parameters are subsequently used to classify the terrain of an area based on the pixel data

contained within the images. An image’s contribution to the classification of an area is then

apportioned according to its coverage of that area. Preliminary results are presented based

on aerial imagery of the Antrim Plateau region in Northern Ireland which indicates potential

in the approach used.

Key words: multi-resolution expectation maximization algorithm; UAV safe landing zone

detection; UAV terrain classification

McClean S, Scotney B, Patterson T, Morrow P, Parr G. Fusion of data and knowl-

edge for safe UAV landing. Int J Software Informatics, Vol.6, No.3 (2012): 381–398.

http://www.ijsi.org/1673-7288/6/i136.htm

1 Introduction

Unmanned Aerial Vehicles (UAVs) provide many advantages over manned air-
craft for a variety of military and civilian applications. Perhaps the most notable of
these is the removal of humans from tasks which may be classified as dull, dangerous
or dirty. For example, power line inspection[1], aerial surveillance[2] and monitoring of
atmospheric pollution[3] respectively. Autonomous UAVs further enhance these ad-
vantages as they do not require real-time control by a human operator and therefore
may have significantly lower operating costs.
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The Engineering and Physical Sciences Research Council (EPSRC) funded Sens-
ing Unmanned Autonomous Aerial VEhicles (SUAAVE) project[4] is concerned with
the creation of an autonomous system consisting of swarms of cooperating UAVs with
an initial application scenario of mountain search-and-rescue. Currently the UAVs
used within the SUAAVE project are Ascending Technologies Pelican platforms[5]

(Fig. 1). These are a quadrotor design with a maximum flight speed of 50 km/h
and a flight time of approximately 20 minutes. In addition to GPS and an inertial
navigation system (INS) the Pelican is equipped with an ATOM processor board, an
IEEE 802.11 networking card and a PointGray Chameleon colour camera. In many
scenarios including mountain search-and-rescue swarms of autonomous, cooperating
UAVs offer significant advantages over a single UAV operating in isolation. Not least
is the potential to fuse observations from heterogeneous and geographically dispersed
sensors to influence an efficient search strategy. A further advantage provided by
utilising multiple UAVs is that in the case of a UAV failure mission execution can be
continued by the remaining swarm members thereby achieving a level of robustness
against node failure.

Figure 1. Ascending Technologies Pelican UAV platform

The United Kingdom (UK) Civil Aviation Authority’s small UAV regulations[6]

are currently similar to those specified for model aircraft. As such one stipulation is
that a UAV must remain within 500 metres of the operator at all times. Intuitively
this constraint greatly impacts upon the versatility and practical potential of the use
of autonomous UAVs for mountain search-and-rescue. Before these regulations can
be relaxed and UAVs fully integrated into unconstrained civilian airspace there are
a number of technical challenges which must be addressed, including sense-and-avoid
capabilities and provision of an autonomous safe landing system.

1.1 Background

As with manned aircraft UAVs are likely to encounter safety critical events such
as prolonged loss of radio signal, for which the most prudent course of action may be
to instruct the UAV to land as soon as possible (Fig. 2). From an operational safety
standpoint it is not sufficient to command the UAV to land on the ground directly
beneath it as this may present an unacceptable risk to animals, humans or property.
Consequently one strand of research within the SUAAVE project has focused on
autonomous Safe Landing Zone (SLZ) detection[7,8]. The approach consists of three
main components, namely detection of potential SLZs, determining SLZ attribute
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values and combining these values to assign an overall numeric safety score for each
SLZ (Fig. 3). Perhaps the most critical stage of the autonomous SLZ detection
process is accurately assigning the safety score to each potential landing site, as false
positives and false negatives may have catastrophic consequences.

Figure 2. Example scenario where an emergency safe landing is required

The main objective of the SLZ detection algorithm is to minimize the risk of
injuring persons, damaging property and where possible preserve the UAV and its
payload. A secondary objective is to enable a fast and efficient retrieval of the UAV
platform. With these objectives in mind a human expert assigns a suitability measure
for landing to each type of terrain. This suitability measure in turn considerably
influences the numeric safety score which a landing site receives. For example, in the
majority of cases it can be assumed that grass is more suitable for landing on than
water. Consequently it is vital to the success of the SLZ detection algorithm that
the computed terrain classification of an area accurately reflects its real-world state.
Within this paper we therefore focus upon the terrain classification component of SLZ
detection (Fig. 3).

An example scenario where an emergency landing is required is depicted in Fig.
2. A key operational safety requirement is that all UAVs must remain within multi-
hop communication range with the base station, thereby enabling commands such
as end mission and land immediately to be transmitted. In this example a swarm
of three UAVs are sent out to sense the environment in search of a missing person.
Due to a GPS failure UAV1 navigates out of multi-hop communication range with
the base station for a prolonged period of time. UAV1 subsequently implements
the decision control process described in Ref. [7]. As the base station is not safely
attainable without a reliable estimate of its real-world position UAV1 executes the
SLZ detection algorithm described in Fig. 3 and determines that the terrain directly
beneath it is a suitable landing site. UAV1 dynamically evaluates the chosen landing
site as it descends and upon landing periodically transmits a beacon notifying other
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UAVs of its presence should they fly within communication range.

Figure 3. Autonomous SLZ detection algorithm overview

1.2 Motivation

The current approach to SLZ detection as discussed in Ref. [7] and Ref. [8] has
focused on single images captured from a single UAV platform. Extending this work
to incorporate multiple images captured by multiple UAVs has two main advantages
for terrain classification:

1. The UAVs operate under strict power constraints and therefore are unlikely to
observe an entire operational area. By combining observations such as terrain
classification from neighbouring UAVs, a global interpretation of the operational
area can be constructed which can enhance tasks such as SLZ detection.

2. The accuracy of computed terrain classification of an area is likely to be in-
fluenced by altitude of capture in addition to sensor type. Due to constraints
imposed by payload capacity and available power it is likely that in an opera-
tional deployment each swarm member will only have a single sensing device.
By enabling the incorporation of multiple images captured from multiple UAVs
the potential is provided for observations from heterogeneous and geographically
dispersed sensors to be used for terrain classification within SLZ detection.

An additional motivating factor behind this work is that, due to its inherently
historic nature, training data for the supervised classification technique employed
may not necessarily accurately reflect the spectral signatures of terrain classes within
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the operational area. There are many reasons for this, including deviation in class
spectral signatures between areas and variations due to seasonal changes.

Presented in this paper is a novel framework for the classification of terrain
which combines knowledge in the form of class parameters estimated during an offline
training phase and Ordnance Survey (OS) map information with data in the form of
multiple images of an area. The images may have been captured at varying altitudes
resulting in multiple resolutions, by different UAVs or at previous points in time. We
extend our previous work on the Multi-Modal Expectation Maximization algorithm
presented in Ref. [9] to ensure that both the knowledge and the data are combined and
weighted in a principled fashion. This approach provides a real-time estimate of class
parameters which are subsequently utilised to classify the terrain in the operational
area.

The remainder of this paper is structured as follows; in Section 2 an overview
of related work is presented. The algorithm and its various facets are discussed in
Section 3. An evaluation based on preliminary results from high quality aerial images
is presented in Section 4. Finally, conclusions and proposed further work are outlined
in Section 5.

2 Related Work

“Information fusion is the study of efficient methods for automatically or semi
automatically transforming information from different sources and different points in
time into a representation that provides effective support for human or automated
decision making.”[10] There are numerous mathematical frameworks in the literature
for data fusion tasks including fuzzy sets, possibility, rough sets, Dempster-Shafer
and probability theory. For a comprehensive review of the current state-of-the-art the
interested reader is referred to Ref. [11] and Ref. [12]. When considering data fusion
within the context of terrain classification from aerial imagery two popular techniques
include Dempster-Shafer and probability theory. The success of these techniques
within this domain is in part due to their suitability for modelling uncertainty of
membership within a well-defined class of objects[11].

2.1 Dempster-Shafer fusion

Dempster-Shafer theory of evidence provides a framework for combining sources
of evidence to reach a degree of belief about the occurrence of an event in the
presence of uncertainty and imprecision. Related applications which have utilised
Dempster-Shafer theory include building detection[13] and terrain classification in
satellite imagery[14].

In Ref. [13] work is presented in which Dempster-Shafer is used to fuse LIght
Detection and Ranging (LIDAR) images with multi-spectral aerial images for classifi-
cation of land cover with a particular emphasis on building detection. An influential
component in Dempster-Shafer theory is the assignment of a mass for each class. In
Ref. [13] a mass function is created which considers height differences between digital
surface models created using LIDAR images and digital terrain models. Addition-
ally, the mass function considers surface roughness, directedness of surface roughness
and the normalized difference vegetative index computed from near infra-red and red
portions in the light spectrum. The masses are subsequently created from the mass
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function in a similar manner to fuzzy logic membership functions. Results are pre-
sented demonstrating a high accuracy of detection for large buildings; however, no
discussion is provided about how the method performed when classifying the sur-
rounding terrain.

One of the main advantages of using Dempster-Shafer theory is the ease with
which ignorance, and therefore imprecision, in sensor readings can be quantified. For
example, certain sensors may detect classes with greater reliability. A further advan-
tage is that non-numerical data such as expert knowledge can be readily incorporated
into the data fusion process. One such example is demonstrated in Ref. [14] where
domain knowledge in the form of if, then rules is converted to masses and fused with
probabilities from a Maximum Likelihood Classifier (MLC). An increase in classifica-
tion accuracy of 6.8% is reported when using a MLC in conjunction with a knowledge
base as opposed to a standalone MLC.

An early criticism of Dempster-Shafer theory was the computational complex-
ity of reasoning. To accommodate this Guan and Bell[16] elaborated a method by
Barnett[16] in which the problem space is partitioned and evidence subsequently clus-
tered within these partitions. Guan and Bell consequently show that reasoning can
be performed in linear time. However, a lingering concern is that Dempster’s rule of
combination may yield irrational results when confronted with conflicting data[17,18].
One could envisage such a scenario occurring within the application of mountain
search-and-rescue where for example, two UAVs have conflicting beliefs about the
terrain classification of an area.

2.2 Probabilistic fusion

Probabilistic data fusion, of which Bayes’ theorem is a major constituent, has
been widely used in real-world applications including fusing multiple sensor readings
of the same scene for seabed classification[19] and detecting planar surfaces from UAV
aerial imagery for autonomous SLZ detection[20].

The motivation behind the work in Ref. [19] is the hypothesis that classification
accuracy will improve as the number of views increases. Multiple views of the same
scene are fused using a joint likelihood calculation in conjunction with the assump-
tion of independence between successive observations. Results are presented based
on real-world, manually labelled seabed data which suggest increased classification
accuracy for challenging terrain such as rippled seabed when viewed multiple times
using differing sensor orientations. However, in the case of ’flat’ seabed classifica-
tion accuracy decreased from 78.5% when viewed once to 59.1% when viewed from
four orientations, suggesting that multiple views do not always translate to increased
classification accuracy.

One advantage of using Bayes’ theorem for data fusion is that prior knowledge
can be leveraged into the process in a principled fashion. Such prior knowledge exists
for many applications including terrain classification from aerial imagery where map
data may be available and incorporation of expert knowledge for medical diagnos-
tics. Furthermore, as the outcome of the fusion process is a set of probabilities the
amount by which further observations would improve confidence in the results can
be quantified, for example by using the entropy of the results, as demonstrated in
Ref. [19].
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3 The Multi-Resolution Expectation Maximization Algorithm

The Multi-Resolution Expectation Maximization (MREM) algorithm is based
upon work introduced in Ref. [9] where we proposed a model-based approach to im-
age segmentation of the same scene acquired from multiple image modalities within a
medical domain. Pixel intensity is modelled by a multivariate Gaussian distribution
mixture in which components correspond to different data classes that represent image
segments. The Expectation Maximization (EM) algorithm is adopted to estimate the
maximum likelihood parameters that characterise the multivariate Gaussian distribu-
tions. The main advantage of our approach is that pixel data from all of the images
are involved in estimating class probabilities, which in turn are combined with image
specific data to give parameter estimations (means and variance-covariance matrices)
for each class within an image.

In our current problem, images of a scene may have been captured at different
times, varying altitudes or by heterogeneous sensor types. Our approach is based on
well-established principles, namely probability models and maximum likelihood esti-
mation. An underlying assumption is that the pixel intensity data within images are
independent, whilst data from all images contribute to the probability of the relevant
areas of a scene belonging to each class. We believe this assumption is a reasonable
approximation and is in the spirit of, for example, Dempster’s rule of combination,
which also assumes that different sources of evidence are mutually independent. Ad-
ditionally we assume a multivariate Gaussian distribution for p-dimensional pixel
intensity data, where generally p = 3.

The search region is decomposed into a set of square grid cells A, of equal spatial
resolution. The easting and northing position of the top left corner of each cell in
A is known, resulting in a coordinate system which can be mapped to a real-world
location and additionally provides each image with a common frame of reference. For
each image it is assumed that an accurate easting and northing position of the top
left corner for each pixel is available in addition to the spatial resolution.

3.1 Initialization

Our model-based segmentation uses model-based clustering to fit a mixture of
multivariate Gaussian distributions that are characterised by parameters: mean vector
µ

(Ir)
k and variance-covariance matrix Σ(Ir)

k for class k = 1, ..., K and images I with
resolutions Ir = 1, ..., IR. Particularly in the multivariate case the initialization of
these parameters can be influential in the quality of the solution provided by an EM
based algorithm. There are two common strategies for initialization, namely random
start positions and using the output from a k-means type algorithm[21].

Analogous to a k-means type approach we use an offline training phase to estimate
initial values for the number of classes, K, and for each image resolution, respective
µk and Σk values. This training phase is conducted by a human expert familiar with
the general operating area using, for example, satellite imagery. This approach to
initialization does not necessarily constitute an additional overhead as knowledge in
the form of training data is required to classify the output of the MREM algorithm
for use within SLZ detection.

Further parameters are the prior class probabilities, denoted by πk. In the ab-
sence of quantifiable knowledge about the prior probability of a class occurring equal
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priors can be assumed. However, for the majority of regions within the UK knowledge
about the operational area can be derived from data provided by the national map-
ping agency, Ordnance Survey (OS). Large scale, vector format OS data represents
the UK landscape as a series of line, point and polygonal features. Each feature is
specified in eastings/northings coordinates to an accuracy of ±0.4 metres[22]. Addi-
tional metadata is included such as the feature code field which can be considered
as a form of terrain classification. Whilst this is historic in nature it can generally
be assumed that the feature code field provides a reliable indicator of the terrain
classification of an area.

For each top-level feature code a human expert is tasked with assigning prior
class probabilities given the occurrence of that feature code. The prior probabilities
incorporate human knowledge about the likelihood of a class given a vague or impre-
cise feature code, for example areas specified as vegetation may contain grass or forest.
By utilising human knowledge in this way the likelihood of a change in classification
may also be captured. There are many scenarios where it is envisaged that this could
occur, for example during summer seasons rivers may dry up and a riverbed become
an impromptu path, or new features may be constructed such as roads. An example
assignment for a subset of classes and feature codes is outlined in Table 1.

Table 1 Example OS feature codes with assigned prior probabilities for a

subset of classes

OS feature Assigned prior probabilities of class

code occurrence

Road Path Water Grass . . .

Road 0.6 0.2 0.04 0.04 . . .

Path 0.2 0.6 0.04 0.04 . . .

Water 0.04 0.1 0.4 0.1 . . .

Vegetation 0.05 0.1 0.05 0.3 . . .

. . . . . . . . . . . . . . . . . .

3.2 Algorithm

We consider an image scene of an area in A for a given image consisting of S

multidimensional pixels and containing K distinct classes labelled C1, ..., CK . The
overall aim of the MREM algorithm is to assign each relevant cell in A to one of
the K classes. The conditional probability density function (p.d.f.) of pixel intensity
based on p-dimensional data x(Ir)

s from pixel s of image resolution, Ir belonging to
class k is then given by:

f
(Ir)
k (x(Ir)

s ) = (2π)−p/2
∣∣Σ(Ir)

k

∣∣−1/2
exp{(x(Ir)

s − µ
(Ir)
k )′Σ(Ir)−1

k (x(Ir)
s − µ

(Ir)
k )}. (3.1)

If the corresponding class probabilities are denoted by πk, k = 1, ..., K, then based
on our assumption of independent images, we obtain the p.d.f. of pixel s as:

f (Ir)(x(Ir)
s ) =

K∑

k=1

πkf
(Ir)
k (x(Ir)

s ). (3.2)
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The MREM then proceeds as shown in Algorithm 1. Within each MREM itera-
tion the E-Step is concerned with estimating posterior probabilities of each pixel in
each image belonging to a class. In the M-Step classes and images each ’vote’ to com-
pute updated prior class probabilities. This enables both the classes and images to be
weighted in an intuitive and principled manner as discussed in section 3.3. Addition-
ally, during the M-Step updated µ

(Ir)
k and Σ(Ir)

k values are computed. Parameters
estimated at the tth iteration are denoted by a superscript (t).

Algorithm 1 MREM algorithm
1: Initialize the parameters using training data.
2: E-Step: compute the posterior probabilities:

P (Ck

∣∣x(Ir)
s ) = P

(Ir)
sk =

π
(t)
k f

(Ir)
k (x(Ir)

s )
∑K

k=1 π
(t)
k f

(Ir)
k (x(Ir)

s )
.

3: M-Step: update the parameters:

π
(t+1)
k =

1∑IR

Ir=1 IrS

IR∑

Ir=1

S∑
s=1

P
(Ir)
sk ,

µ
(t+1)
Irk

=
∑S

s=1 xIrs
P (Ck|xIrs

)∑S
s=1 P (Ck|xIrs

)
,

Σ(t+1)
Irk

=

∑S
s=1 P (Ck|xIrs

)((xIrs
− µ

(t+1)
Irk

)T (xIrs
− µ

(t+1)
Irk

))
∑S

s=1 P (Ck|xIrs
)

,

Updatef (Ir)
k (x(Ir)

s ) using parameters estimated at iteration t+1.

4: Compute termination criterion for example, (pseudo) likelihood.
5: Repeat steps 2 to 4 iteratively until convergence is attained.
6: Segmentation step: assign the class label for relevant cells in A:

Ae,n = arg maxk(
1
IR

IR∑

Ir=1

P
(Ir)
sk ).

The primary output of the MREM algorithm is a terrain classification for each
observed cell in A. A secondary output is an updated estimate of class parameters.
Whilst it may appear appropriate to utilise the updated class parameters to initialize
the MREM algorithm upon each execution this may not necessarily increase the
accuracy of the approach. For example, brightly coloured objects such as flowers may
skew the estimated parameters of the nearest class. Therefore, in this work class
parameters are initialized using training data upon each execution of the MREM
algorithm. This ensures that whilst a measure of flexibility is incorporated to reflect
the historic nature of the training data the global impact of updated class parameters
is limited. Online learning of class parameters in an outdoor environment will form a
beneficial, albeit challenging part of future work.
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3.3 Weighting of images

Within the context of terrain classification to assist in the assignment of a SLZ
safety score[8] it is likely that images will vary in terms of their reliability and pre-
cision. It is therefore desirable to weight an image’s ’vote’. Three attributes which
would influence the weighting an image receives are the altitude of capture, time since
capture and sensor type. The general concept and how the weights would be incor-
porated into the MREM algorithm are outlined below. In an actual implementation
the influence that the specific attribute values would have upon an image’s weighting
could be determined empirically.

In the general case the altitude of image capture can be influential upon the
terrain classification assigned to an area. Images captured at a high altitude will be
of a lower spatial resolution and therefore contain less information about a real world
area than their lower altitude counterparts. However, it cannot be assumed that a
lower altitude of capture will necessarily translate to a higher quality result. For
example at a very low altitude grass may exhibit similar spectral signatures to forest.
Furthermore valuable contextual information may not be available when images are
captured at a very low altitude. It is therefore desirable to weight the altitude of
capture between a lower and upper bound.

Many of the terrain classes likely to be encountered during a mountain search-
and-rescue have the potential to change throughout the duration of the mission. There
are two main types of possible changes. Firstly a class may be to some extent charac-
teristically dynamic. One such example is water, which may be influenced by precip-
itation and evaporation. Secondly, a class may have a higher likelihood of containing
external objects, i.e., objects which are not considered as terrain. For example, the
terrain class road which incorporates spectrally and functionally similar areas such as
car parks may change frequently resulting in an area which previously may have been
considered as a potential SLZ becoming wholly unsuitable for landing in. Similarly
the contents of rural areas such as fields may change due to animals grazing. It is
therefore desirable to decrease the weight which an image has upon the classification
of an area as its time since capture increases.

Whilst the primary sensing device utilised within the SUAAVE project is a COTS
colour camera it is advantageous to include a mechanism whereby an image is weighted
according to the type and quality of the capturing sensor. This enables knowledge such
as a sensor’s aptitude for detecting certain classes to be incorporated. For example, in
Ref. [23] it is shown that thermal infra-red cameras can be very successful at detecting
wet areas as they are generally cooler than the surrounding vegetation.

The formulation of step 3 in the MREM algorithm allows the efficient and
lightweight incorporation of weights into the approach. Let w1Irk be the weight-
ing associated with altitude of capture for class k of image resolution Ir. Similarly let
w2Irk and w3Irk be the weightings associated with time since capture and sensor type
respectively. The combined weighting for each class in each image is then calculated
as,

wIrk =
w1Irk + w2Irk + w3Irk∑K

k=1

∑3
j=1 wjmk

. (3.3)

These weights are incorporated by modifying the relevant part of step 3 in the MREM
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algorithm to,

π
(t)
k =

1∑IR

Ir=1 IrS

IR∑

Ir=1

S∑
s=1

wIrkP
(Ir)
sk . (3.4)

In a real-world implementation it is envisaged that the actual weightings asso-
ciated with attribute values for altitude of capture, time since capture and sensor
type would be learned from a human expert during an offline training phase. Whilst
this will form part of future work, possible approaches include weighting an image
inversely by time since capture and weighting image credibility based on intraclass
variance of spectral values. When used in conjunction with a threshold such a weight-
ing mechanism may be further used to assist in excluding potentially unuseful images
from consideration by the MREM algorithm.

3.4 Incorporating images of varying spatial resolution

For the application scenario of combining aerial images captured by a UAV with
additional images during a search-and-rescue mission it is unrealistic to assume that
each image has the same pixel scale. Therefore an image’s contribution towards the
terrain classification of an area is apportioned according to its coverage of that area.

When considering images of varying spatial resolution with respect to the spatial
resolution of A there are three possibilities, namely, higher resolution, equal resolution
or lower resolution. Similar steps are taken to compute the coverage for each possi-
bility. As an example, the case where an image has a higher resolution is discussed
in the following subsection.

3.4.1 Incorporating images of higher spatial resolution

Where any image has a higher spatial resolution than A, i.e. a single pixel in
I covers a smaller real-world area than a cell in A, there are nine different types of
coverage as outlined in Fig. 4. In order to calculate the coverage of a pixel in I of
a cell in A the type of coverage must first be detected. The coverage in the x axis,
cx and y axis, cy can then be subsequently calculated. To compute the coverage the
easting, Ae, northing, An coordinates of the top left corner of the relevant cell in A

in addition to the easting, Ie, northing, In coordinates of the top left corner of the
pixel under consideration is necessary. The spatial resolution of A denoted by Ar

and I denoted by Ir is also required. The steps in determining the type and area of
coverage of a single pixel in I are delineated below:
(i) Case 1 occurs when the x-axis of a pixel at Ie,n is partly to the left of Ae,n and
the y-axis is partly above (Fig. 4i). This case is detected when:

In > An and In − Ir < An and Ie < Ae and Ie + Ir > Ae,

cx, cy can then be calculated as,

cx = Ie −Ae + Ir, cy = An − (In − Ir). (3.5)

(ii) Case 2 occurs when the x-axis of a pixel at Ie,n is fully contained within Ae,n and
the y-axis is partly above (Fig. 4ii). This case is detected when:

In > An and In − Ir < An and Ie > Ae and Ie + Ir 6 Ae + Ar,
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cx, cy can then be calculated as,

cx = Ir, cy = An − (In − Ir). (3.6)

(iii) Case 3 occurs when the x-axis of a pixel at Ie,n is partly to the right of Ae,n and
the y-axis is partly above (Fig. 4iii). This case is detected when:

In > An and In − Ir < An and Ie > Ae and Ie + Ir > Ae + Ar,

cx, cy can then be calculated as,

cx = Ae + Ar − Ie, cy = An − (In − Ir). (3.7)

Figure 4. Possible types of coverage where an image has a higher spatial resolution than A

(iv) Case 4 occurs when the x-axis of a pixel at Ie,n is partly to the left of Ae,n and
the y-axis is fully contained within it (Fig. 4iv). This case is detected when:

In 6 An and In − Ir > An −Ar and Ie < Ae and Ie + Ir > Ae,

cx, cy can then be calculated as,

cx = Ie −Ae + Ir, cy = Ir. (3.8)

(v) Case 5 occurs when the entire pixel at Ie,n is fully contained within a cell at Ae,n

(Fig. 4v). This case is detected when:

In 6 An and In − Ir > An −Ar and Ie > Ae and Ie + Ir 6 Ae + Ar,

cx, cy can then be calculated as,

cx = Ir, cy = Ir. (3.9)
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(vi) Case 6 occurs when the x-axis of a pixel at Ie,n is partly to the right of Ae,n and
the y-axis is fully contained within it (Fig. 4vi). This case is detected when:

In 6 An and In − Ir > An −Ar and Ie > Ae and Ie + Ir > Ae + Ar,

cx, cy can then be calculated as,

cx = Ae + Ar − Ie, cy = Ir. (3.10)

(vii) Case 7 occurs when the x-axis of a pixel at Ie,n is partly to the left of Ae,n and
the y-axis is partly below (Fig. 4vii). This case is detected when:

In < An and In − Ir < An −Ar and Ie < Ae and Ie + Ir > Ae,

cx, cy can then be calculated as,

cx = Ie −Ae + Ir, cy = In − (An −Ar). (3.11)

(viii) Case 8 occurs when the x-axis of a pixel at Ie,n is fully contained in Ae,n and
the y-axis is partly below (Fig. 4viii). This case is detected when:

In < An and In − Ir < An −Ar and Ie > Ae and Ie + Ir 6 Ae + Ar,

cx, cy can then be calculated as,

cx = Ir, cy = In − (An −Ar). (3.12)

(ix) Case 9 occurs when the x-axis of a pixel at Ie,n is partly to the right of Ae,n and
the y-axis is partly below (Fig. 4ix). This case is detected when:

In < An and In − Ir < An −Ar and Ie > Ae and Ie + Ir > Ae + Ar,

cx, cy can then be calculated as,

cx = Ae + Ar − Ie, cy = In − (An −Ar). (3.13)

Having calculated the coverage of a pixel at Ie,n of a cell at Ae,n the influence, ι,
on the terrain classification at Ae,n can be apportioned according to the coverage by,

ι =
cx × cy

A2
r

. (3.14)

Thus step 6 of the MREM algorithm becomes,

Ae,n = arg maxk(
1
Ir

IR∑

Ir=1

ιP
(Ir)
sk ), (3.15)

resulting in pixels which cover a larger area of a cell in A having a greater influence
upon the final classification.

3.5 Multiple UAVs
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The algorithm described in this paper provides a method whereby multiple images
of the same scene each contribute to the classification of an area. Whilst the steps
executed are the same regardless of the image source in theory these multiple images
may have been captured at different points in time, at varying altitudes or by different
members of a UAV swarm (Fig. 2). However in practice there are a number of issues
which must be considered before the incorporation of images from different members
of the UAV swarm can be implemented in a real-world scenario.

Within a swarm based sensing platform such as multiple UAVs the question
of when to transmit and receive information such as images can be of fundamental
importance to the overall success of the mission. It is infeasible to assume unlimited
bandwidth especially bearing in mind that other tasks requiring communication such
as path planning and collision avoidance are simultaneously executing. Thus the
consideration of when to share sensed images will be based upon the number of hops
required, available bandwidth and the time required for transmission, in addition to
the relevant UAV system attribute states, for example battery life.

An influential parameter when considering time for transmission is the volume of
data to be transmitted. As the MREM algorithm utilises the actual spectral values
contained within the images to estimate new class parameters it is a requirement
that the complete image is transmitted along with an associated weighting. However
in a real-world implementation these images would be compressed, thus reducing the
bandwidth requirement. As the UAVs have finite battery life one possible approach to
limiting the required bandwidth is to prioritise which images are transmitted based on
areas that a UAV has the potential to navigate to. In the event of a UAV requesting
images from surrounding swarm members for assistance in locating a safe landing zone
a further method of prioritization may be to transmit only images of areas which have
suitable terrain for landing in. Determining the circumstances under which image data
are transmitted will be the subject of further research.

4 Evaluation

A preliminary evaluation of the MREM algorithm presented in this paper was
conducted using commercially available high quality aerial imagery of the Antrim
Plateau region in Northern Ireland. Whilst this aerial imagery was captured during
manned flights it is spectrally representative of images sensed by a UAV. One of the
main advantages of using such aerial imagery at this stage of evaluation is that it
generally does not contain noise such as clouds. A further advantage is that it is
geo-registered thus enabling OS data to be readily incorporated. As a case study
aerial imagery of two areas, each measuring approximately 0.5km by 0.25km were
chosen. These areas contained 9 main classes (road, path, water, shadow, trees, soil,
grass, scrubland and gorse) which are similar to those likely to be encountered by a
UAV performing a search-and-rescue mission in mountainous terrain. At this stage
in development a distinct class is used for ’shadow’ as due to its spectral appearance
accurately determining the underlying terrain type is challenging, however may form
part of future work.

For the purposes of this evaluation three spatial resolutions were used to simulate
varying UAV altitudes. One low resolution (1 pixel = 1 metre) image was used
to simulate an image captured at a high altitude; four images of medium spatial
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resolution (1 pixel = 0.25 metre) were used to simulate images captured at a medium
altitude and sixteen images of high spatial resolution (1 pixel ≈ 0.1 metre) used to
simulate images captured at a low altitude.

4.1 Accuracy

To determine the accuracy of the MREM algorithm portions of the study area
were manually labelled by a human expert using a Matlab based GUI. Three experi-
ments were conducted which demonstrate how additional image resolutions influence
the overall classification. The first experiment was based on a single low resolution
image. The second experiment combined both the low resolution image with the
four medium resolution images. Finally a third experiment combined all the image
resolutions. The results of these experiments can be found in Fig. 5.

Figure 5. Classification results demonstrating the effect of additional resolutions upon

accuracy

There are two main reasons for the low classification accuracy of road and path.
Firstly, these classes account for a very small portion of the study area and are
therefore assigned a low likelihood of occurring firstly by initial weights based on OS
data and subsequently by the MREM algorithm. Secondly these classes have low
spectral separability with other classes when considered in the RGB colour space, for
example a path is visually similar to scrubland and road is visually similar to shadow
and water. In many cases an indicator of man-made features such as roads or paths
can be the presence of geometrical features such as parallel lines. These lines can be
recognized in aerial imagery using image processing techniques such as edge detection
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and edge linking. It is expected that incorporating such knowledge into the MREM
algorithm would increase the classification accuracy of these classes. The approach
to weighting discussed in this paper naturally lends itself towards giving a single
class within an image a higher weight. For example, roads, paths and water may be
more accurately detected by higher resolution imagery than grass. Determining these
weights in a principled fashion using real data from a UAV will form an invaluable
part of future work.

When considering both study areas the overall classification accuracy increased
from 40.38% when classified using low resolution imagery to 56.59% when classified
using both low and medium resolution imagery. When the areas were classified using
three resolutions the overall classification accuracy further increased to 67.58% sug-
gesting that additional image resolutions can lead to increased accuracy. Whilst for
the application of terrain classification to assist in UAV SLZ detection these overall
accuracies are relatively low possible approaches which may increase the classifica-
tion accuracy may be to consider alternative colour spaces and to utilise a textural
based classifier as opposed to the ’per-pixel’ approach used in this work. In particular
it is envisaged that textural based classification techniques would enhance the clas-
sification accuracy of grass as a pixel’s neighbourhood is considered. Additionally,
post classification processing, for example using Markov Random Fields may further
increase the accuracy.

4.2 Computational cost

The MREM algorithm was implemented in Matlab and evaluated on an Intel
Core 2 Duo 3Ghz desktop PC with 3GB RAM. The termination criterion for the
MREM algorithm was that of convergence in estimated class parameters or a change
in the log likelihood of less than 0.001. A summary of the required time is outlined
in Table 2. On average the MREM algorithm required 4 iterations before termina-
tion. When considering three image resolutions this translates to an average time of
27.2 seconds which represents a significant time overhead when considered within the
context of SLZ detection for a UAV. It is however hoped that with further refinement
and optimization of code this may be reduced to an average time of 1 second per
image resulting in 4 iterations of three images, taking approximately 12 seconds.

Table 2 Average values for the MREM algorithm per iteration

Experiment # of images Time(s)

considered

Low res 1 0.6

Low and 2 3.6

medium res

Low, medium 3 6.8

and high res
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5 Conclusions and Further Work

Presented in this paper is a novel framework which combines knowledge in the
form of class parameters estimated during an offline training stage and OS map in-
formation with data in the form of multiple images of a scene to classify the terrain
of an area. The MREM algorithm is used to update class parameters based on the
spectral values contained within each image resolution. Updated class parameters
are then used to classify each image and its influence upon the classification of an
area apportioned according to its coverage of that area. A number of areas of future
work have been identified which will further the usefulness of this framework for on-
line terrain classification applications such as SLZ detection for UAVs. Initial results
are presented based on spectrally representative aerial images of the Antrim Plateau
Region in Northern Ireland which indicate potential in the approach used.

Perhaps one of the main advantages of the approach discussed in this paper is the
ability to efficiently incorporate weights into the terrain classification process. These
weights may be based on various attributes including altitude of capture, sensor type
or time since capture. For a real-world safety critical application it is not sufficient to
assign these weights arbitrarily and therefore an important part of future work will
be analysing how values for each of these attributes impact upon the reliability of the
terrain classification provided by an image.

Currently a per-pixel based approach is used for the terrain classification com-
ponent of the MREM algorithm. For classes with high spectral separability this
approach provides a relatively high rate of classification accuracy. However, it can
yield poor results for classes which are visually similar. An important part of future
work will therefore be to implement textural based classification methods in addition
to a post classification component using, for example Markov Random Fields.

A preliminary evaluation of the framework presented in this paper was performed
using high quality aerial imagery. An immediate extension of this work is therefore to
implement the MREM algorithm on a UAV platform. This will introduce a number of
constraints such as the limited computational power, memory capacity and available
battery life however will enable us to further validate the approach. It is expected
that with the implementation of the further work outlined in this section the MREM
algorithm will prove to be a valuable component within the SLZ detection process.
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