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Table 1 The parameter of the four-link planar system ADAMS
Moment of
body Mass kg length m inertia kg.m2
12.0 2.0 4.0 3
24.0 4.0 32.0
3 12.0 2.0 4.0
s 1
g — ADAMS soft
E . modified method
@ 0.5 -- stabilization method
=
- ot
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8
: '
a8 9 0.5
=t
2 ADAMS

Fig.2 Comparison of constraint violation stabilization method modified method and ADAMS soft
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Fig.3 The acceleration of the mass center of the 1th link
Table 2 Numerical results of constraint violation stabilization

method modified method and ADAMS soft

obtained by constraint violation stabilization method

4 X10*
elapsed  displacement in
time s y direction m

20 79.7540 - 0.800926

method ¢ cp=c¢

3
30 101.4550  0.0950776
constraint violation 40 122.0460 — 0.540981
stabilization method 50 107.3750 - 0.319504

100 104.61M — 0.0265222
200 107.4850 — 0.0264932
400 122.9460 — 0.0264944
ADAMS —0.0264866

total input energy/]
e

0 1072 3 38.2750 — 0.0264678
0 10? 3 35.2710 - 0.0264678
107! 5 33.1680 — 0.0264678
1074 8 32.3770 - 0.026468
4 102 10 28.6220 — 0.0264678
Fig.4 The input cnergy 103 20 28.9020 — 0.0264679
modified method 102 20 28.3210 — 0.0264834
0.3 10 30 29.0820 — 0.0264679
1074 40 28.4410 — 0.0264848
% 0.2 I 102 40 28.9210 - 0.026485
B 10* 40 30.1340 — 0.0264687
8 102 50 31.1250 — 0.026468
i 0-1 10° 50 31.9260 — 0.0264986
[+]
3
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Fig.5 The balance between the input energy and ADAMS

the system energy obtained
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A MODIFIED NUMERICAL METHOD FOR DYNAMICAL EQUATIONS
OF THE MULTIBODY SYSTEMS WITH SINGULARITY POSITION "

Xu Yongsheng Qi Zhaohui
Department of Engineering Mechanics Dalian University of Technology Dalian 116023 China

Abstract The differential-algebraic equations are often chosen as the mathematical models of the dynamics of
multibody systems in order to achieve the numerical emulation for the multibody systems. Based on the exist-
ing constraint violation stabilization method a modified numerical method for the equations with singularity
positions is proposed in the present paper. By correcting the violation of the velocity and controlling the stabili-
ty term in the modified method the differential-algebraic equations with singularity positions are solved and
the values of the coefficients in the stability term are suggested. Thus the numerical difficulty due to the sin-
gularity of the multibody systems is effectively eliminated. The contrast between the numerical results of the
example using the modified method and the ADAMS soft demonstrates the effectiveness of the proposed modi-
fied method. The balance based on the law of conservation of energy also proves the effectiveness of the

method.
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