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Abstract: Although many clustering algorithms have been proposed so far, seldom was focused on 
high-dimensional and incremental databases. This paper introduces a grid density-based clustering algorithm——
GDCA, which discovers clusters with arbitrary shape in spatial databases. It first partitions the data space into a 
number of units, and then deals with units instead of points. Only those units with the density no less than a given 
minimum density threshold are useful in extending clusters. An incremental clustering algorithm——IGDCA is also 
presented, applicable in periodically incremental environment. 
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Clustering is a descriptive task which groups a set of data without a predefined class attribute to maximize the 
intra-class similarity and minimize the interclass similarity. Many databases are composed of millions of data with 
several tens even hundreds of dimensions. Unfortunately, there are few clustering algorithms applicable to 
high-dimensional database. Density-Based clustering[1,2] and grid clustering[3,4] can discover clusters with arbitrary 
shape and separate noise. DBSCAN[1] finds dense regions that are separated by low density regions and clusters 
together the points in the same dense region at two parameters: Eps-radius of the neighborhood of a point and 
Minpts-minimum number of points in the neighborhood. Clusters are then found by starting from an arbitrary point 
and including the points in its neighborhood into the cluster if its neighborhood satisfies the minimum density (core 
points). Those points (boundary points) whose Eps-neighborhood contains less than Minpts of points are marked 
noise. The noise points can be clustered if they belong to the Eps-neighborhood of a core point of a cluster in later 
process. The process is then repeated until there is no point which has not been clustered or marked noise. Since the 
region queries can be supported efficiently by spatial access method such as R*-tree, the average rum time 
complexity of DBSCAN is O(N*logN), where N is the number of points. But overlap in directory of R*-tree is 
increasing very rapidly with growing dimensionality, which leads to go through many paths for region queries. So, 
R*-tree can only adequately support an effective indexing of moderate values of dimensions so that DBSCAN has 
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an almost quadratic time complexity for high-dimensional data. In this paper, we present a grid density-based 
clustering algorithm——GDCA by first partitioning the data space into a number of units, and then dealing with 
units instead of points. Only those units with the density no less than a given minimum density threshold are useful 
in extending clusters. Due to the sparsity property of high-dimensional data space, noise becomes more ubiquitous 
than in low-dimensional space. Our algorithm improves the efficiency of DBSCAN by only searching the neighbors 
of dense units. Besides, it has the following properties: discovery of clusters with arbitrary shape, the ability of 
handling noise and good efficiency on large databases. 

Clustering can discover potentially useful patterns from databases. But these patterns may become old after a 
series of updates to the databases, which may lead to mistakes in decision support. So, it is important to keep the 
patterns up to date. Due to the large size of the databases and the high time complexity of clustering algorithms, it is 
highly desirable to perform these updates incrementally. Adopting the density-based nature of DBSCAN, an 
incremental algorithm[5] making the insertion and deletion of a point affects the current clustering only in the 
neighborhood of this point. Thus, efficient algorithms can be given for incremental insertions and deletions to an 
existed clustering. But this algorithm is sensitive to the updates of database. Even one addition or deletion may 
bring mergence or separation of clusters. And it only processes one update at a time without considering the 
relationship between the single updates. In fact, a merged cluster resulting from some additions may be split again 
due to the following deletions. Similarly, two split clusters resulting from some deletions may be merged due to the 
following additions. So, the strategy of dealing with single update is unnecessary and time-consuming. In this paper, 
we present an incremental clustering algorithm——IGDCA based on GDCA, dealing with a bulk of updates. 

The rest of the paper is organized as follows: In section 1, we present a grid density-based clustering algorithm
——GDCA followed by some definitions. We introduce an incremental clustering algorithm——IGDCA based on 
GDCA in section 2. Lastly, we conclude the paper. 

1   GDCA ——a Grid Density-Based Clustering Algorithm 

Let A={A1,A2,…,Ad} be a set of numeric attributes (dimensions), each dimension having a bounded, totally 
ordered domain. S=A1×A2×…×Ad is the minimum bounding hyper-rectangle of the database, constructing a 
d-dimensional numeric space. D={p1,p2,…,pN} is a set of d-dimensional points, where pi={vi1,vi2,…,vid}. We 
partition the data space S into non-overlapping rectangle units, with the jth dimension being divided into mj intervals 
of equal length. Given an order to the intervals of each dimension, {r1,r2,…,rd} is called the position of a unit. 
Assuming m is equal to mi for all dimensions, S is divided into md units. Let sj be the length of the intervals of the ith 
dimension. A d-dimensional point pi={vi1,vi2,…,vid} is contained in c having the position {r1,r2,…,rd}, if and only if 
(rj –1)×sj≤vij<rj×sj , 1≤ j≤d. The density of c is defined as the number of points contained in it, denoted as N(c). A 
unit c is called non-empty if N(c)>0, or dense if N(c)≥δ, where δ is a density threshold. We denote the set of 
non-empty units and the set of dense units as Cne={c | N(c) ≥ 0} and Cd={c | N(c) ≥ δ} respectively. |Cne| can range 
from 1 to min (md,N) depending on m, N and the distribution of points. In low dimensional space, the number of 
non-empty units is exponential to d. In high-dimensional data space, the overwhelming majority of units are empty 
so that the number of non-empty units is linear to N. 

Definition 1. Let c1, c2 be two units. The distance between c1 and c2 is defined as dist(c1,c2)=Euclidean- 
distance(mean(c1),mean(c2)), where mean(c) is the geometric center of c. Given a distance threshold τ, the 
neighborhood of c is defined as near(c)={c’| c’∈Cne,dist (c’,c)≤τ}. 

Definition 2. Given τ and δ, we can define some relation between two units c and c’ as follows: 
(1) c’ is directly density-reachable from c if c’∈ near(c) and c∈Cd; 
(2) c’ is density-reachable from c if there is a chain of units c1,c2,…,ck, c1=c, ck=c’, such that ci+1 is directly 
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density-reachable from ci; 
(3) c’ is density-connected to c if there is another unit c’’ such that both c and c’ are density-reachable from c’’. 
Definition 3. A cluster C is a non-empty subset of Cne with all points contained in it being assigned to C, if 
(1) ∀c,c’: if c∈C and c’ is density-reachable from c, then c’∈C; (2) ∀c,c’∈C: c’ is density-connected to c. 
Definition 4. Let {C1,C2,…,Ck} be a set of clusters. Cn is defined as the set of noise units not belonging to any 

cluster, i.e. Cn= {c|c∉Ci,1≤i≤k}. All points contained in Cn is assigned to noise. A clustering of D is to partition D 
into a set of clusters C1,C2,…,Ck and noise Cn, satisfying C1∪C2∪…∪Ck∪Cn =D and ∀i,j∈{1,2,…,k,n}, Ci∩Cj= ∅. 

If c is a dense unit, then C={c’| c’∈ Cne and c’ is density-reachable from c} is a cluster. On the other hand, if c 
is an arbitrary dense unit of C, then C={c’| c’∈Cne and c’ is density-reachable from c}. It implies that a cluster can 
be determined by any dense unit it contains. Starting from an arbitrary dense unit, a cluster is created by extending 
to its neighbor units. This procedure is applied to the new retrieved dense units until all density-reachable units from 
the start unit are retrieved. Then another unclustered dense unit is selected to discover a new cluster. 

1.1   Algorithm description 

In general, GDCA can be divided into three steps: 
Step 1. Preprocess: Map each point into the corresponding unit and stores position, density, sum of the 

non-empty units as well as pointers to the points using a k-d tree. 
Step 2. Clustering Cne: Find the cluster of units based on density-reachable and density-connected. Initially, all 

units are identified as “unclustered”. To find a cluster, GDCA starts from startc using a breadth-first search. If a 
neighbor unit of startc is unclustered, it is identified as the current cluster. Moreover, if it belongs to Cd, it is added 
to the end of seeds. Then currentc is deleted from the seeds. Next, the first unit of seeds is extracted to perform the 
same procedure. When all density-reachable units in the cluster had been visited, a cluster is discovered. 
Consequently, the procedure repeats by starting with an unclustered dense unit until there is no unclustered dense 
unit. 

Step 3. Map each point in D to the cluster: If p∈c, and c∈Ci, we identify p as Ci. 

1.2   Time complexity 

 DBSCAN computes the neighbor points for every point, since it does not know whether a point is a core point 
or a boundary point without searching its neighborhood. In fact, the number of core points is much less than that of 
all points and it is unnecessary to search the neighborhood of the boundary points because no point can be 
density-reachable from them. In GDCA, we partition the data into units and deal with units instead of points. If the 
unit is small enough, all points in a unit are close enough to each other so that a unit can be considered as a 
subcluster. Then we get the dense units (similar to core points) in the pre-process. Only those dense units are 
extended during the clustering step. So, the time complexity of GDCA is O(N+|Cd| log |Cne|). GDCA has the 
following properties: (1) GDCA only stores the non-empty units, the number of which is linear to N as the 
dimensionality increases so that GDCA is applicable for high dimensionality; (2) GDCA only searches the neighbor 
units of dense units, the number of which is much smaller than that of the non-empty units; (3) If the distance of a 
unit to the nearest dense unit is more than τ, then it will not be density-reachable from any dense units. After 
pruning such units, k-d tree is much smaller than the original tree, that will improves the efficiency of queries. 

2   IGDCA——an Incremental Algorithm of GDCA 

Assuming we have got a set of clusters using GDCA. When new data are inserted or original data are deleted, 
we must modify the existed clusters to reflect the changes. Let ∆db be the inserted data to D, and ∇db be the deleted 
data from D. The new database D’ = D ∪∆db-∇db. Since updates can be seen as a series of insertions and deletions, 
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we only consider insertions and deletions. A unit is called updated if at least one point is inserted to or deleted from 
it. Since an inserted or deleted point only affects the density of unit in which it is contained, we consider units 
instead of points. The new density of an updated unit is denoted as N’ (c). 

After some insertions, non-dense units may become dense implying that new density connection may be 
established between two units c and c’ which were not density-reachable from each other, i.e., a chain c1,c2, …,cn, 
c1=c, cn= c’ with ci+1 directly density-reachable from ci. In the chain, at least one unit cj, 1≤j≤n is non-dense in D, 
but becomes dense in D’. After some deletions, dense units may become non-dense implying that old density 
connection may be removed between c and c’ which were density-reachable from each other, i.e., a chain c1, 
c2,…,cn, c1 =c, cn=c’ with ci+1 directly density-reachable from ci. In the chain, at least one unit cj (1≤j≤n) is dense in 
D, but becomes non-dense in D’. Note that if insertions and deletions occur in the same unit, their affection may 
counteract to each other. 

 If an updated unit keeps its density property, i.e., it is dense or non-dense in both D and D’, it won’t result in 
any change on the cluster state of other units. Thus, we only consider those units which change the dense property, 
denoted as UCd =∆Cd ∪∇Cd, where ∆Cd ={c | N’ (c)≥δ, and c∉Cd } and ∇Cd ={c|N’ (c)<δ, and c∈Cd}. The affected 
units of c∈ ∆Cd are those units density-reachable from c in D’, i.e., C_eff(c)={c’ | c’ is density-reachable from c in 
D’}. Similarly, C_eff(c) = {c’ | c’ is density-reachable from c in D} represents the affected units that may change 
their cluster identifier because of c∈∇Cd. 

2.1   Algorithm description 

Step 1. Discover updated units: A data structure C_upd is used to keep the updated units. Each unit is stored as 
one element using position as the key. After ∆db ∪∇db have been scanned, we find the units whose density property 
change. For each c∈C_upd, if c∈Cne, it is marked as “old”, and identified as its original cluster identifier. Otherwise 
it is marked as “new” and identified as “unclustered”. We then calculate the new density of c. If c∉Cd and becomes 
dense (new dense unit), then c is put into ∆Cd; If c∈Cd and becomes non-dense (lost dense unit), then c is put into 
∇Cd. Furthermore, we update the information of c. Specially, if c∉Cne, a new entry is created; If the new density of 
c decreases to 0, the corresponding entry is deleted. ∆Cd and ∇Cd store all new dense units and lost dense units 
respectively, arranged by the increasing order of Clid. At last, Cd = Cd + ∆Cd -∇Cd, Cne = Cne ∪C_upd. 
Struct C_upd 
{ position // position of units 
 insert_number // the number of inserted points to the unit 
 delete_number // the number of deleted points from the unit 
 insert_sum // the sum of all inserted points 
 delete_sum // the sum of all deleted points 
 mark // “new” if it is a new unit, “old” otherwise 
 Clid // the ClusterId of the unit 
 Pointers [insert_number + delete_number] 
  {mark // “insertion” or “deletion” 
   point // the inserted or deleted points }  
} 

Step 2. Modifying affected clusters: Cluster new points and modify the existed clusters. 
Case 1. ∆Cd = ∇Cd = ∅: There is neither new dense unit nor lost dense unit so that none of existing units will 

change the cluster. For each new non-empty unit c, if the distance between c and its nearest dense unit c’ is no more 
than τ, c is identified as the same cluster as c’, else c is identified as “noise”. If c is an existing unit, every new point 
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in c is added to the cluster of c and every deleted point is removed from the corresponding cluster. The details are 
described as follows. 

Procedure Modify-Cluster() 
{For i:=1 to C_upd.size do 

{c:= C_upd.get (i); 
 If c. mark = “old” then AssignClid (c, c.Clid); 
 Else {c’:= Cd.NearestQuery (c); 
      If d (c, c’) ≤ τ, then AssignClid (c, c’.Clid); 
      Else AssignClid (c, “noise”);} 
Delete all p∈∇db from the original cluster;} 

} 
Case 2. ∆Cd ≠ ∅, ∇Cd = ∅: New density-reachable chain may be established but none is removed. Three cases 

are considered:  
 Creation: A new cluster is created by a new dense unit which is not density-reachable from any old dense unit; 
 Absorption: Noise units and new non-empty units are absorbed into an existed cluster if they are 

density-reachable from an dense unit of the cluster; 
 Mergence: Several clusters may be merged if dense units of different cluster are density-reachable from each 

other. A principle of merge is that all merged clusters should change their identifiers to the minimum identifier. 
For example, if one merge relates to a set of clusters C1,C2,…,Ck, and C1.Clid<C2.Clid<…<Ck.Clid, then all 
units of Ci, 2≤i≤k, change their Clid to C1.Clid. We rearrange the units in ∆Cd by the increasing order of their 
Clid. Those units with “unclustered” or “noise” are identified as the minimum Clid of their neighbor dense 
units, otherwise they are added to the last of ∆Cd. 

Theorem 1. Let c be the first unit of ∆Cd at the end of the kth call of ExpandCluster (), c will not be reassigned 
as other Clid during the rth (r>k) ExpandCluster (). 

Proof.  The principle of merge is to change the Clid of the merged clusters to the minimum one and keep ∆Cd 

as the increasing order of Clid. At any time, the first element has the minimum Clid in ∆Cd. If c is reassigned to 
other Clid during the rth (r>k) call, then c is density-reachable from c’ and c’.Clid < c.Clid. That is, there exists 
chain c1,c2,…,cn, c1=c’, cn=c with ci+1 directly density-reachable from ci. In the chain, there must exist cj∈∆Cd, 1≤ j 
≤n. Otherwise c is density-reachable from c’ and then c has been reassigned to c’. Clid before the kth call. From the 
chain, we can select cj∈∆Cd, and cj.Clid<c.Clid. It is paradox with the assuming that c is the first element of ∆Cd.   

The process of modifying clusters is similar to that of finding clusters described in section 3. Clustering () is 
used to create new clusters and modify the existing clusters so that all units of the merged clusters can change their 
identifiers to the minimum as described in Theorem 1. Firstly, all units density-reachable from a starting c are 
retrieved, in which those units with Clid more than c.Clid are identified as c.Clid (mergence). We also assign c.Clid 
to the “unclustered” and “noise” units (absorption). If c is an “unclustered” or “noise” dense unit, a new cluster is 
created (creation). 

Procedure Clustering (Cne, Cd, τ ) 
{  For i:=1 to | ∆Cd | do  
   { startc = Cd.get(i); 
 If c.Clid in {“unclustered”,“noise”} then  
 {ClusterId := NextId (ClusterId); AssignClid (c, ClusterId); } // create a new cluster  
 ExpandCluster (∆Cd, startc, startc.Clid, τ); // modify all units density-reachable from startc 
  }} 
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Procedure ExpandCluster (∆Cd, startc, ClusterId, τ)  
{Seeds.append (startc); 
 While Seeds<> Empty do 
 { currentc := Seeds.first (); 

 result := Cne.RegionQuery (currentc, τ);// return the neighbor units of currectc 
  For i from 1 to results.size do 
  { resultc := result.get (i); 
   If resultc.Clid in {“ unclustered”,“ noise” } then 
    AssignClid (resultc, ClusterId); 
   Else If resultc.Clid > currentc.Clid then  
     {AssignClid (resultc, ClusterId); 
      MarkEquivalent (resultc.Clid, currentc.Clid);} // make the merged clusters 
   If resultc ∈ Cd then Seeds.append (resultc); 
   If resultc ∈ ∆Cd  then ∆Cd.delete (resultc); 
  } Seeds.delete (currentc); 
 } } 

 Case 3. ∇Cd ≠∅: There are some lost dense units which may result into the split of Clusters. For each unit 
c∈∇Cd, we have to check whether or not the neighbor units of c are density-connected by other dense units in the 
cluster. It is an expensive procedure, equivalent to test all dense units of the cluster. For this case, we call the 
original GDCA to get the modified cluster. Fortunately, insertion is much more frequent than deletion in many 
applications such as transaction database, Web access log database, and data warehouse. So, IGDCA is quite useful 
for such applications. 

2.2   Efficiency analysis 

The larger the incremental data is, the longer it would take reading the incremental data and updating the 
information of related units so that the speed gain would slow down. Moreover, the second case would possibly lead 
to creation or mergence of clusters, which is more time-consuming than the first case. The more updated units 
resulted from incremental data, the more effected units would change their cluster identifiers so that IGDCA would 
obtain less gain compared to running GDCA on the whole database. Experiments are performed to support this 
analysis.  

3   Conclusions 

Recently, clustering has been recognized as a primary data mining method for knowledge discovery in spatial 
databases. In this paper, we introduce a grid density-based clustering algorithm——GDCA. In order to make GDCA 
applicable in periodically incremental environment, we also present an incremental clustering algorithm——
IGDCA, dealing with a bulk of updates instead of single update. Future work includes automatic determination of 
thresholds and improvement on the efficiency of deletion. 
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基于密度的增量式网格聚类算法 

陈  宁 1,  陈  安 2,3,  周龙骧 1 
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摘要: 提出基于密度的网格聚类算法 GDCA,发现大规模空间数据库中任意形状的聚类.该算法首先将数据空间划
分成若干体积相同的单元,然后对单元进行聚类.只有密度不小于给定阈值的单元才得到扩展,从而大大降低了时间
复杂性.在 GDCA的基础上,给出增量式聚类算法 IGDCA,适用于数据的批量更新. 
关键词: 聚类;网格;增量算法 
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