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Abstract: Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization problems and 
is known for its diverse applications. This paper presents a new fast ant heuristic for the QAP, the 
approximate-backbone guided fast ant colony algorithm (ABFANT). The main idea is to fix the approximate- 
backbone which is the intersection of several local optimal permutations to the QAP. After fixing it, the authors can 
smooth the search space of the QAP instance without losing the search capability, and then solve the instance using 
the known fast ant colony algorithm (FANT) which is one of the best heuristics to the QAP in the much smoother 
search space. Comparisons of ABFANT and FANT within a given iteration number are performed on the publicly 
available QAP instances from QAPLIB. The result demonstrates that ABFANT significantly outperforms FANT. 
Furthermore, this idea is general and applicable to other heuristics of the QAP. 
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摘  要: QAP(quadratic assignment problem)问题是经典的组合优化问题之一,广泛应用于许多领域中.针对
QAP问题,提出了一种新的蚁群算法——近似骨架导向的快速蚁群算法(ABFANT).该算法的基本原理是通过对
局部最优解的简单相交操作得到 QAP 问题实例的近似骨架(approximate-backbone),利用这些近似骨架可以极
大地缩小QAP问题的搜索空间,而同时不降低搜索的性能,最后对这个缩小后的搜索空间,直接用当前求解QAP
问题最好的启发式算法之一快速蚁群算法(FANT)求解得到问题的解.在 QAPLIB 中的典型实例上的实验
结果表明,近似骨架导向的快速蚁群算法明显优于快速蚁群算法.此外,指出基于近似骨架的算法思想可以很容
易地被移植到其他求解 QAP问题的启发式算法中. 
关键词: QAP;近似骨架;ABFANT;QAPLIB 
中图法分类号: TP301  文献标识码: A  

1   Introduction 

The quadratic assignment problem (QAP) was first proposed by Koopmans and Beckman[1] in the context of 
the plant location problem. Given n facilities represented by the set F={f1,…,fn}, and n locations represented by the 
set L={l1,…,ln}, one must determine to which location each facility must be assigned. Let Bn×n=(bi,j) be a matrix 
where bi,j∈R+ represents the flow between facilities fi and fj. Let An×n=(ai,j) be a matrix where entry ai,j∈R+ 
represents the distance between locations li and lj. Let p:{1,…,n}→{1,…,n} be an assignment and define the cost of 

this assignment to be . In the QAP，we want to find a permutation vector p∈Π∑∑
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minimizes the assignment cost, i.e. min c(p), subject to p∈Πn, where Πn is the set of all permutations of {1,…,n}. 
The QAP is well known to be strongly NP-hard[2].  

Many practical problems from such areas as location science[3], architectural design[4], and hardware/chip 
design[5] can be formulated as instances of the QAP; other well known combinatorial optimization problems such as 
the traveling salesman problem and the graph partitioning problem are special cases of the QAP[6]. Since the QAP is 
a NP-hard problem，exact solution approaches are currently only effective for the instances of size n<30. Therefore 
several heuristics that attempt to find the near-optimum solutions to the large QAP instances in a reasonable time 
have been proposed. Such heuristic approaches include the ant colonies[7,8], evolution strategies[9], genetic 
algorithms[10], simulated annealing[11], neural networks[12], tabu search[3,13], threshold accepting[14], tree search 
heuristics[15], randomized greedy search (GRASP)[16], and hybrid approaches[17−19].  

The backbone of a problem instance is referred to as the set of variables that are common to all global optimal 
solutions for the given instance. The concept first appeared in Ref.[20] when Kirkpatrick and Toulouse studied the 
Traveling Salesman problem, and attracted much attention recently[21−23]. An exact backbone, however, is generally 
hard to be obtained for many optimization problems such as QAP, MAXSAT, and TSP. Instead, an approximate- 
backbone, which is the intersection of different local optima of an instance, can be used to investigate the 
characteristic of the instance[24]. The original idea of local optima intersection can be found in the related study in 
TSP[25]. In this paper, we apply the similar idea to the QAP, where an approximate-backbone is the common 
variables of several local optimal permutations of instance (more details in Section 3). 

In the past, ant system algorithms have been applied to a variety of combinatorial optimization problems[8,26]. 
In this paper we suggest a new fast ant algorithm for the QAP that incorporates the idea based on the 
approximate-backbone. We call this algorithm the approximate-backbone guided fast ant algorithm. The main idea 
is to fix the approximate-backbone of a QAP instance so that we can smooth the searching space of the instance 
without losing the searching capability. And then we can solve the QAP instance using the known fast ant colony 
algorithm[26] in the much smoother search space. A comparison of the ABFANT and FANT within the given 
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iteration times is performed on the publicly available QAP instances from QAPLIB. The result indicates that our 
ABFANT obtains better solutions than FANT in about ninety percent of the performance. 

The main contribution of this paper is an innovative method that exploits the solution structure of the QAP to 
improve the performance of a heuristic such as FANT (Section 2). We establish a connection between global 
optimal and local optimal by using the approximate –backbone, instead of the exact backbone, of the QAP. The idea 
developed here is general and applicable to other heuristics of the QAP. Due to the limited available source codes of 
heuristics, we only apply the new method to FANT (Section 2). We believe, however, the method can also achieve 
improvement on other heuristics. 

The paper is organized as follows. Section 2 presents the fast ant colony algorithm to the QAP. Section 3 
introduces the backbone and our approximate-backbone to the QAP. Section 4 describes the ABFANT algorithm 
designed to solve the QAP. In Section 5, result for many QAP instances from QAPLIB produced by the ABFANT, as 
well as comparisons with FANT, is presented. Section 6 concludes the paper and outlines several future research 
directions. 

2   Fast Ant Colony Algorithm to QAP 

In this section, we introduce one of the best heuristics to the QAP, FANT[26,27] (Algorithm 3), which combines 
the local search with the ant colony algorithm for the QAP. FANT can be specified as four components: the memory 
structure, the constructing procedure, the improving procedure (local search procedure), and the way that the 
memory is updated.  

The memory is principally constituted by a matrix T of size n×n whose entry τij measures the preference of 
setting pi=j, and from an ant system point of view, this matrix represents the pheromone trail left by the ants. The 
construction of a provisory solution is presented in Algorithm 1. The improvement procedure is a local search 
process described in Algorithm 2, and the procedure will be repeated twice (The evaluation of ∆(p,i,j) can be 
performed in O(n) using Eq.(1)). The memory is updated as Eq.(2), where r and R represent the reinforcement of the 
matrix entries corresponding to p, the solution produced at the current iteration, and p*, the best solution produced 
so far. More details of FANT can be found in Refs.[26,27].  
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3   Backbone and the Approximate-Backbone 

The backbone of a problem instance is referred to as the set of variables that are common to all global optimal 
solutions for the given instance. These variables are critically constrained as the elimination of any one of them will 
negate any possibility of finding any optimal solution. Currently, there are a significant amount of research 
activities in finding backbone variables[28], correlating the size of the backbone with problem hardness and phase 
transitions[21−23]. An exact backbone, however, is generally hard to be obtained for many optimization problems 
such as QAP, MAXSAT, and TSP. Instead, an approximate-backbone, which is the intersection of different local 
optima of an instance, can be used to investigate the characteristic of the instance 

Algorithm 1. Constructing a provisory solution. 
Input: The QAP instance from QAPLIB 
Output: The provisory solution of the instance 
Begin 
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1) I=∅, J=∅ 
2) While |I|<n repeat: 

  2a) Choose i, randomly, uniformly, Iini ∉≤≤ ,1  
  2b) Choose j, randomly, uniformly, Jjnj ∉≤≤ ,1 , with  

  probability  ∑
∉≤≤ Jknk

ik
,1
τijτ  and set  jpi =

  2c) I=I∪{i}, J=J∪{j} 
3) Return p 
End 
Algorithm 2. Local search procedure in FANT. 
Input: The provisory solution of the instance 
Output: The local optimal solution of the instance 
Begin 
1) I=∅. 
2) While nI <  repeat: 

  2a) Choose i, randomly, uniformly, Iini ∉≤≤ ,1 . 
  2b) {J =  }i
  2c) While nJ <  repeat: 
  2c1) Choose j, randomly, uniformly, Jjnj ∉≤≤ ,1 . 
  2c2) If 0),,( <∆ p , exchange pji i and pj in p. 

  2c3) J=J∪{j}. 
  2d) I=I∪{i} 

3) Return p 
End 
Algorithm 3. FANT. 
Input: The QAP instance I from QAPLIB 
Output: The solution of the QAP instance I 
Begin 
1. Initialize the memory structure T and the optimal solution p* 
2. Do the following for some given number M of iterations 

2.1 Construct a provisory solution p of instance I (Algorithm 1) 
2.2 Improve the solution p by the local search procedure to get p′ (Algorithm 2) 
2.3 If p′ is better than p* then  

2.3.1 Set p*= p′ 
2.3.2 Initialize the memory structure T 

2.4 Update the memory structure T 
3. Return p* 

End 
In this paper, we define and investigate the properties of approximate-backbone of the QAP. Basically, an 

approximate-backbone of the QAP is the common permutation of k different local optima of a QAP instance, which 
can be obtained by any QAP heuristics. More specifically, given an instance I of the QAP and its k different local 
minima, p0,p1,…,pk−1, we have the following definition. 

Definition 1. The approximate-backbone of I, AB(p0,p1,…,pk−1)=p0∩p1∩…∩pk−1, (pi∈Πn,i∈[0,k−1]) is the 
intersection of all these k local minima. 
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We test several QAP instances with different sizes for finding their approximate-backbones, and find out that 
segments in an approximate-backbone generally appear in the global optimum with high probability. For an 
instance, Table 1 gives the size of its approximate-backbone and the corresponding probability of appearing in 
global optimum averaged over 20 independent runs. All the local minima of the QAP instances are obtained by 
FANT within the given iteration times. We only report data of k=2 in Table 1, for the reason that the size of the 
approximate-backbone is generally very small (for almost all of the instances the size is zero) when k≥3. 

Table 1  Statistical results of the approximate-backbone (AB) 

QAP instance 
name 

The size of  
QAP instance 

The average size 
of AB 

The average probability of AB appearing  
in the global minima (%) Iteration times 

Chr25a 25 5 57.0 100 
Tai30b 30 14 77.8 100 
Tai40b 40 21 90.0 100 

Lipa40a 40 8 69.1 100 
Tai50b 50 12 56.3 250 
Chr22b 22 5 81.9 250 
Tai80b 80 8 84.3 10000 

Colligating all the above results, we conclude that, when the number of the local optima is 2, the size of an 
approximate-backbone is generally moderate to the size of instance, and the approximate-backbone appears in 
global optimum with high probability. 

4   Approximate-Backbone Guided Fast Ant Colony Algorithm 

Motivated by the conclusions obtained from the experimental results in the above section, we design a new ant 
colony heuristic: approximate-backbone guided fast ant colony algorithm (ABFANT for abbreviation). In the 
scheme of ABFANT, an approximate-backbone is obtained by FANT. Then we smooth the search space by fixing 
segments in the approximate-backbone. After that, FANT is used again to identify the remaining segments in the 
permutation. A formal description of ABFANT is shown below. 

Algorithm 4. The Approximate-Backbone Guided FANT. 
Input: The QAP instance I from QAPLIB. 
Output: The solution of the QAP instance I 
Begin 
1. Find an initial solution p0 by using FANT for inputting the QAP instance I 
2. Do the following: 

2.1. Find k−1 different solutions p0,p1,…,pk−1 of I by FANT 
2.2. Obtain the approximate-backbone AB(p0,p1,…,pk−1) of these k solutions 
2.3. Fix AB(p0,p1,…,pk−1) to get a new search space S*(I)  
2.6. Run FANT to get the solution pk in the search space S*(I) 
2.7. If pk is better than p0, set p0=pk 

3. Return p0 
End 

We fix AB(p0,p1,…,pk−1) from the QAP instance I to reduce the search space of I. As shown in Fig.1, when the 
search space of instance I, S(I), is very large, it is also very rugged so that the chance of escaping from a local 
minimum by a long jump of the local search in FANT is small. After fixing the approximate-backbone of I, we get a 
new search space S*(I), which is much smoother than S(I), and a long jump can escape from a local minimum with 
large probability. So the local search process in FANT will be more efficient in the search space S*(I) than in S(I). 
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 The search space S(I) The new search space S*(I) 

Fig.1  Search space of the QAP 

5   Experimental Results 

Our ABFANT was implemented in C++ on a Pentium IV PC (1.4GHz) running Redhat 7.2. To evaluate its 
performance, we selected several QAP instances from QAPLIB[29], ranging from n=20 locations up to n=150. The 
QAPLIB contains different types of QAP instances, which may be distinguished by their flow dominance and 
distance dominance[30]. The flow dominance fd for the flow matrix B is defined as: 
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The flow dominance is high when few entries in the flow matrix have a high influence on the total cost, and if 
almost all entries are equally sized, the flow dominance is low. The distance dominance dd can be defined in a 
similar manner for the distance matrix A. QAP instances with randomly generated flows (distances) using a uniform 
distribution typically have a low flow (distance) dominance, whereas real-life instances and (non-uniformly) 
randomly generated instances close to real-life instances have considerably higher dominance values for at least one 
of the matrices. We ran ABFANT and FANT to solve the selected instances, including problems with high and low 
flow and/or distance dominance value, within the given iteration times. 

In Figs.2 and 3, the detailed comparisons of one performance of ABFANT and FANT with QAP Instance wil50 
and sko64 are given. The x-axis denotes the number of ABFANT and FANT’s iterations; and the y-axis represents 
the quality of the solution to the QAP instance. The iteration number in ABFANT is the sum of the iterations used to 
find the approximate-backbone and the iterations to get the solution in the new search space S*(I). 
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 Fig.2  Comparisons of ABFANT and FANT

on Instance wil50 within 400 iterations 
Fig.3  Comparisons of ABFANT and FANT on

Instance sko64 within 2500 iterations  
In Table 2, the instance name denotes the name of the QAP instance from the QAPLIB (the number indicates 

its size n). The average quality of solutions obtained by the ABFANT or FANT is the average value over 20 runs. 
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Each run is guaranteed to be independent of others by starting with different random seeds (The only exception is 
the instance tho150, where run times is 5, due to its very large execution CPU time). The result in Table 2 indicates 
that ABFANT is superior to FANT for all but two instances, in terms of quality of solution within a given iteration 
limit. For the instances of tai30b and sko42, FANT shows a slightly better performance than ABFANT. However, 
the two instances are the smallest in similar instances such as tai50b, tai80, sko64, and sko72, so that their search 
spaces are smooth enough to obtain a good solution purely by FANT. 

Table 2  Comparisons of ABFANT and FANT for the QAP 

Instance name Average quality of solutions 
obtained by ABFANT 

Average quality of solutions  
obtained by FANT Iteration times 

Tai30b 637550702.3 637141763.6 350 
Tai40b 638030216.9 638672951.1 350 
Tai50b 459994458.1 460061936.0 850 
Chr22b 6296.9 6310.9 750 
Chr25a 4160.5 4220.7 350 
Kra30a 90246.3 90309.0 300 
Kra30b 91723.6 91782 350 
Wil50 48914.3 48916.2 400 
Esc32a 134.7 135.6 350 
Ste36a 9603.1 9612.7 350 

Lipa40a 31827.8 31831.4 400 
Sko42 15867.0 15857.2 650 
Sko64 48564.3 48576.4 2500 
Sko72 66411.0 66436.0 3500 
Tai80b 821885368.0 826026281.4 30000 

Sko100a 152135.2 152214.4 30000 
Tho150 8142022.0 8151250.0 50000 

6   Conclusion and Future Work 

In this paper, an approximate-backbone guided fast ant colony algorithm (ABFANT) for the quadratic 
assignment problem is presented. The main idea of the guided heuristic is to fix the approximate-backbone of QAP 
instances, which is the common variables of several local optimal permutations, and fixing it can smooth the search 
space so that local search in FANT will be more efficient in the space. The performance of the ABFANT algorithm 
was investigated on a set of QAP instances with high and low flow and/or distance dominance value, and compared 
to the performance of the FANT algorithm, which is one of the best heuristic approaches to the QAP. The ABFANT 
outperforms the FANT on almost all QAP instances within the given iteration number. Moreover, The idea 
developed in this paper is generic and applicable to other heuristics of the QAP. 

There are two possible future research directions. Firstly, we can apply the idea of approximate-backbone to 
other combinatorial optimization problems. We believe that the new applications will also get good results. Second, 
a detailed analysis of the QAP search space will certainly be beneficial to understanding, as well as predicting, the 
behavior of the approximate-backbone guided fast ant colony algorithm. 
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