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Abstract: Haplotypes, rather than genotypes are required in some disease susceptibilities and drug response tests. 
However, it is both time-consuming and expensive to obtain haplotypes experimentally. Therefore usually genotype 
data are collected in the laboratory at first, then, haplotype data are inferred from them resorting to some 
computational approaches. Different from Clark’s well-known haplotype inference method, Gusfield and Wang et al. 
proposed a new model according to the maximum parsimony principle. It tries to find a minimum set of haplotypes 
that can explain the genotype samples. This parsimony model overcomes some weaknesses of Clark’s method. For 
the parsimony this paper presents model a polynomial time greedy algorithm and a compound algorithm that 
combines the greedy policy with the branch-and-bound strategy in a uniform framework. Compared with the 
original complete algorithm proposed by Wang et al., the greedy approximation algorithm runs much faster, and in 
the meanwhile, produces relatively higher accurate results. The compound algorithm is also a complete algorithm. 
Simulation results show that it is much more efficient and can be applied to instances of much larger scales than the 
original complete algorithm. 
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摘  要: 在疾病的易感基因研究和药物反应实验中,常常需要知道单倍型,而不仅仅是基因型数据.但是直接通
过生物学实验手段来测定单倍型在时间和成本上消耗过大,所以在实验室里往往仅测得基因型,而通过一些计
算手段来推导出单倍型.不同于 Clark 著名的单倍型推导模型,Gusfield 和 Wang 等人提出了一种通过基因型样
本推导单倍型的新模型.这种模型试图按照最大节约原则去寻找可以解释基因型样本的最小单倍型集合.这种
基于节约原则的模型克服了 Clark 模型的一些缺陷.提出了节约原则模型的一个多项式时间的贪心算法以及一
种把贪心策略和分支限界策略集合在统一框架下的复合算法.相对于Wang原来提出的分支限界完全算法,贪心
的近似算法运行快得多,而且同时保持了比较准确的推导结果.新的复合算法也是一种完全算法.实验结果表明,
与原来的分支限界算法相比,复合算法可以极大地提高运行效率以及可应用的实例规模. 
关键词: 基因型;单倍型;SNP;单倍型推导;最大节约原则;贪心算法 
中图法分类号: TP301  文献标识码: A  

The modeling of human genetic variation is critical to the understanding of the genetic basis for complex 
diseases. Single nucleotide polymorphisms (SNPs) are the most frequent form of this variation. Supported by the 
Human Genome Project (HGP), dense human SNP maps are currently under construction. Then polymorphism 
screens in a population can be carried out to find genes related to disease susceptibilities and drug responses 
according to the dense SNP maps. 

Humans are diploid. In diploid organisms there are two copies of each chromosome. The data from a single 
copy of the interested region are depicted as a haplotype, while the conflated data on the two copies of the interested 
regions are depicted as a genotype. Sometimes haplotype data rather than genotype data are required to give more 
detailed information. However, it is both time-consuming and expensive to examine the two copies separately using 
biological methods. Therefore usually blended genotype data are obtained in the laboratory, from which haplotype 
information is inferred resorting to some other kinds of tools. The way to infer haplotype data using computer 
programs is called in-silico haplotyping. There are many kinds of such methods nowadays, including Clark[1], 
Gusfield[2], Excoffier[3] and Stephens[4], etc. 

The first in-silico haplotyping algorithm was proposed by Clark[1] and examined more thoroughly by 
Gusfield[5]. Clark’s method has been used extensively and demonstrated effective in practice[6−8]. However, to apply 
Clark’s method, it needs the assumption that there must be some homozygotes or single-site heterozygotes in 
genotype samples. A new model was proposed to avoid such limitation[9,10]. Given a sample population of 
genotypes, its objective is to find out a set of minimum number of haplotypes that explains these genotypes, which 
fits in with the maximum parsimony principle. Compared with Clark’s method, the parsimony model could be 
applied in wider fields. Wang proposed a complete algorithm using branch-and-bound methods. However, it is an 
exponential time algorithm and cannot be applied to large-scale instances. In this paper, we present an efficient 
polynomial time approximation algorithm, which is desired in Ref.[10]. 

Each genotype will be split into a pair of haplotypes in the process of haplotyping. In order to explain the 
genotype set with least haplotypes, the greedy algorithm repeats the following steps until all the genotypes are split 
into a pair of haplotypes: i) seek for a maximum set that contains some unresolved genotypes with a common 
pattern, ii) split these genotypes according to the common pattern.  

Our greedy algorithm runs very fast and keeps a relatively high accurateness to reconstruct the original 
haplotypes. However, it is an approximation algorithm. We can combine the greedy policy with the branch- 
and-bound strategy in a uniform framework, using the result of the greedy algorithm as the initial bound of the 
branch-and-bound algorithm. The compound algorithm is also a complete algorithm. Our experimental results show 
that it is much more efficient and can be applied to instances of much larger scales than the original one. 

The rest of the paper is organized as follows: in Section 1, we formalize the problem of haplotyping and the 
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model by maximum parsimony. Section 2 is devoted to the design of the greedy algorithm and the compound 
algorithm. The experimental results based on the simulation data are given in Section 3. At last, Section 4 concludes 
the whole paper and brings forward some promising directions for future work. 

1   Preliminary Definitions 

First of all, we formalize the problem of in-silico haplotyping and the parsimony model. 
Sequences of genotype and haplotype data are presented as string vectors. Each site corresponds to a position 

of interest on the chromosome. Mostly, there are two possible nucleotides that appear at any site of haplotypes, so 
we just focus on these cases and denote the nucleotides by “0” and “1”. Then a haplotype is presented as a vector 
where each component has a value of “0” or “1”. 

A genotype g is formed by combining two haplotypes h1 and h2. On each SNP site, the value of the associated 
position in g is determined by the state of corresponding sites in h1 and h2. For example, if h1 and h2 have the same 
state “0”(respectively “1”) on one SNP site, then the corresponding site of g should also be “0”(respectively “1”), 
which denotes a homozygous (also referred as resolved) site. If h1 has state “0” and h2 has state “1” on one SNP site 
then the corresponding site of g should be “2”, which denotes a heterozygous (also referred as ambiguous) site. We 
put it down as g=h1⊕h2. Haplotype pair (h1,h2) is reversely called an explanation of genotype g, and haplotypes 

and are compatible with genotype g. The genotype g can be split to generate a pair of haplotypes h1h 2h 1 and h2. 

A vector is ambiguous if it contains heterozygous sites; otherwise it is resolved. Haplotype vectors are always 
resolved vectors; and genotype vectors are usually (but not always) ambiguous vectors.  

Under this definition, a sample population of genotypes can be viewed as a set of vectors G={g1,g2,…,gn} 
where each component has a value of “0”, “1” or “2”. Each vector in the set is a sequence associated with m sites of 
interest on the two copies of a chromosome. The purpose of haplotyping is to find out an explanation for each 
vector gi in G. 

Definition 1. Haplotyping Given a set G={g1,g2,…,gn}of genotypes of length m, where each component has a 
value of “0”, “1” or “2”, find out a set H={h1,h2,…,ht} of haplotypes (of length m), so that for any genotype g∈G, 
there is a pair of haplotypes h, k∈H that g=h⊕k. 

We then call that H explains G. Obviously, with the number of heterozygous site (k) increases, the number of 
possible haplotypes (2k) increases exponentially. Without additional biological background, one cannot figure out 
which way gives the solution nearest to the reality. How to infer the actual haplotypes from the daunting number of 
all possible ones thus becomes the problem of in-silico methods. 

Simulation and real data experiments showed that solutions near to reality tended to be produced when the 
amount of the result from the distinct resolved vectors was small. The observation and such idea is formalized as the 
model of haplotyping by maximum parsimony[9,10]. 

Definition 2. Haplotyping by maximum parsimony Given a set G={g1,g2,…,gn} of genotypes of length m, 
where each component has a value “0”, “1” or “2”, find out a set H={h1,h2,…,ht} of haplotypes (of length m) that 
explains G such that |H| is minimized. 

This parsimony model surmounts Clark’s method by overcoming its drawbacks: it needs no starting set and 
leaves no orphans. It tries to use least haplotypes to explain most genotypes. In this meaning, it accords with the 
principle of maximum parsimony, which is a ubiquitous principle in nature. 

2   Algorithms 

Wang[2] proposed a complete branch-and-bound algorithm for it. Although it works well for some small-scale 
instances, it is an exponential time algorithm. So it cannot be applied to large-scale instances. 
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In this section, we will present a greedy algorithm and a compound algorithm that combines the greedy policy 
with the branch-and-bound strategy in a uniform framework.  

2.1   Branch-and-Bound algorithm 

Given a set of genotypes G, the branch-and-bound algorithm searches all possible solutions and finds the best 
one. The whole search space is explored via depth-first search (DFS) to try each possible resolution for each 
genotype. When the size of a partial solution is greater than or equal to the current bound, it skips the bad subspace 
and moves to the next possible good choice. Please refer to the subsection 2.3 for a more formal illustration. 

Theoretically, the running time of the algorithm is exponential in terms of the input size.  

2.2   Greedy algorithm 

In the worst cases, the branch-and-bound algorithm must try out all of the leaves in the search space to find the 
optimal solution. This would be unbearable in time. Usually, heuristic policies are then employed to make a 
trade-off between performance and cost. 

Our idea comes from a straightforward observation. If two different vectors and in the original set G are 

split into two haplotype pairs that contain a common vector h, then the result H will have one less distinct resolved 
vectors. The more common vectors we get in the process, the less distinct vectors we get as the result. If we could 
design an algorithm that produces the maximum common vectors during splitting all genotypes in G, we have got 
another optimal algorithm. Nevertheless, trying to produce the maximum common vectors requires a global view of 
the given genotype sample, which is difficult to obtain. 

1g 2g

Greedy policy thus becomes a good alternative. We design an algorithm based on this idea, seeking for a 
maximum set S in each local iteration step. S contains some vectors, which can be split to generate a common vector 
s, called the common pattern of S. Then we can split the vectors in S according to s: for each vector c∈S, c is split to 
s and a complementary vector (c=s⊕c′). 

The whole framework of Algorithm Greedy_haplotyping is shown in Fig.1. 
 
 
 
 
 
 
 
 
 
 

Fig.1  The framework of algorithm Greedy_haplotyping 

ALGORITHM Greedy_haplotyping (INPUT: genotype set G OUTPUT: haplotype set H) 
BEGIN 
 S0←{all the vectors in G} 
 Seek_for_S(S0,S) 
 While (|S|≥2) 
  S0←S0−S 

Split S according to s and put the result vectors into S′ 
  S0←S0+S′ 
  Seek_for_S(S0,S) 
 Post process: split all unsettled vectors in S0 arbitrarily and output it as haplotype set H 

END 

Update to S 

 In Fig. 1, we firstly initialize a set S0 to contain all of the vectors in the original set G. Vectors in S0 will be 
split step by step in a manner of “update to S0”: 

Update: Find a maximal subset S of S0, which has a common pattern s. Delete the vectors in S from S0, and 
split them according to the common pattern s. The newly obtained resolved vectors will be put back into S0. 
Remove the duplicate ones. It is called an update on S0. 

“Update to S0” won’t stop until S0 contains no ambiguous vectors or we can’t find an S(S≥2). At last, examine 
S0 once again and split all the unresolved vectors in it. 
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The internal procedure Seek_for_S should be refined. Its objective is to find out the maximal S with a common 
pattern for S0. Let S0={g1,…,gt}, we perform the seeking process by eliminating the incompatible vectors step by 
step till vectors in Sk 

(m) have a common pattern. Please refer to Fig.2 for detail.  

 
 

Fig.2  The procedure Seek_for_S( ) SS ,0

PROCEDURE Seek_for_S(S0,S) 
BEGIN 
 S1

(1) = S1
(1) = ··· = St

(1) = S0  
 for i = 1 to m do 
  for j = 1 to t do 
   if gj,i = 0 (or 1, respectively), then for k = 1 to t do 
    if gk,i = 1 (or 0, respectively),  then Sj 

(i) = Sj 
(i) - gk 

  for j = 1 to t do Sj 
(i+1) = Sj 

(i) 

 S = {Sk0
(m) : | Sk0

(m) | = maxk | Sk
(m) |} 

END 

2.3   Compound algorithm 

Although the greedy algorithm performs well, it is an approximation algorithm. In the case that high 
accurateness is required, we may still want a complete algorithm. A good idea is to combine the greedy policy with 
the branch-and-bound strategy in a uniform framework. Firstly, we run the greedy algorithm and obtain one 
approximate solution. The solution can be used as an initial bound of the branch-and-bound algorithm. Therefore we 
can prune away many unnecessary searching paths and greatly reduce the search cost. 

Suppose that there are ki (>1) ambiguous sites in genotype gi, so there are ways to split g12 −ik
i, each way 

gener
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ates a pair of resolution haplotypes. Figure 3 illustrates the framework of the algorithm. 
 ALGORITHM Compound_haplotyping (INPUT: genotype set G OUTPUT: haplotype set H) 

BEGIN 
 S = Φ; H * = the solution returned by the greedy haplotyping 

  For i1 = 1 to  do, 112 −k

  S = S + the i1 pair of resolution haplotypes of g1; if |S| > | H * |, exit; 

  For i2 = 1 to  do, 122 −k

   S = S + the i2 pair of resolution haplotypes of g2; if |S| > | H * |, exit; 

   ………… 

    For in = 1 to  do, 12 −nk

     S = S + the in pair of resolution haplotypes of gn; If |S| < | H * |, then H *= S 

     S = S - the in pair of resolution haplotypes of gn 

………… 

S = S - the i2 pair of resolution haplotypes of g2 

  S = S - the i1 pair of resolution haplotypes of g1 
END 

Fig.3  

iscussion on the complexity

he time complexity of the b

. It may be unbearable if m
on with high probability. Now
)n
The framework of algorithm Compound_haplotyping 

 of the algorithms 

ranch-and-bound algorithm is . If there is no limitation to k)2( 21 nkkkO +++ L
i, it is 

,n are very large. The greedy algorithm runs fast and it can obtain the optimal 
 we analyze its time and space complexity in more detail. 
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Theorem 1. The time complexity of our greedy algorithm is O , and its space complexity is . )( 3 mn ⋅ )( mnO ⋅

Proof.  The outer iteration may be executed as much as n−1 times. Each time it splits one ambiguous vector. 

The time complexity of procedure Seek_for_S is (for that t = O(n)), so, the time complexity of 

the greedy algorithm is O . 

)()( 22 nmOtmO ⋅=⋅

)( 3 mn ⋅

The space to keep all subsets Sk 
(m) is clearly , and it’s the largest space the algorithm will consume.   )( mnO ⋅

Theoretically, although the greedy algorithm can speedup the branch-and-bound algorithm greatly, the 
compound algorithm is still an exponential time algorithm. However, our experimental results demonstrates its 
efficiency in practice (please refer to the next section).  

Possibly, we may come out with a set S with an ambiguous common pattern s. If s is resolved, there would be a 
unique way to split the vectors in S according to s. However, if s is ambiguous, there would be several ways to split 
the vectors in S: each ambiguous site in s could be either “0” or “1”. Without any further information, we could not 
tell which way is better, so we simply enumerate all cases. Our experiments demonstrate that enumerating all cases 
doesn’t largely lower the algorithm's performance. 

3   Experiments 

All the algorithms are implemented in C++. The programs are now available upon request. Experiments based 
on simulation data have been done to examine their performance, which is discussed below. 

3.1   Random data and simulation data on the coalescent model 

As pointed out by Niu[11], to adopt which kind of data in the experiment will dramatically affect the 
performance of in silico haplotyping programs. We employ two kinds of data for the sake of justness: random data 
and simulation data. 

Simulation data sets generated based on some model usually would favor or impair the programs. In order to 
evaluate the systems on any sample that has no clue about evolutionary history, the first kind of data we adopted in 
our experiments is random. Firstly, we generate a number of sequences of haplotypes randomly, simply setting 
every bit evenly and independently. Then two of them are randomly chosen and paired to generate a genotype. 
According to the number of SNPs, different number of genotypes is generated to form a sample population. 

However, real data from living cells are believed to fit into some specific genetic models. To test the programs 
under more realistic data samples, we introduce a powerful model called the coalescent theory. Developed by R. 
Hudson[12], the program ms is the most widely used program, which uses coalescent theory to generate simulating 
population samples of haplotypes. Many independent replication samples under a variety of assumptions about 
migration, recombination rate, number of gametes and polymorphic sites are generated in our experiments. Provided 
with the simulation haplotypes, genotype samples could also be generated as before. 

3.2   Comparisons with the branch-and-bound algorithm 

To evaluate the performance of our programs, we introduce two parameters: running time t and accurate rate 
ρ . Let = number of correctly resolved genotypes, = total number of individual genotypes,cn tn ρ  is defined as: 

t

c

n
n

=ρ  

All experiments were conducted on a single-CPU P-III PC with an i686 CPU at 550MHz and 512M RAM. We 
tested our algorithms in three groups of scales. For each scale 100 data sets are generated and the performance is 
evaluated by computing the average numbers in these 100 runs. 

We use simulation data in this subsection. Our genotype sample is generated as follows: firstly, a set H0 
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consisting of nhap hapn distinct haplotypes is generated by ms. Each vector contains m sites. Then the haplotypes are 
randomly paired to create ntemp genotypes. A post-examination is executed to delete the duplicate ones from these 
ntemp genotypes. The residual ngeno strings will be exported into a file as the input of the haplotyping algorithms. 

3.2.1   Small-Scale instances 

For the three algorithms, these instances all end within 1 second. The output set H of the complete algorithm 

(the output set H of the compound algorithm is the same as that of the branch-and-bound algorithm) always contains 

6 haplotypes. In most cases, but not always, it could restore the original haplotype set H0. Theoretically, we could 

find an H with less than 6 haplotypes, but we do not observe such cases in our experiments.  

The output set H of the greedy algorithm contained 6 to 12 haplotypes. In about 1/2 cases H contains 6 

haplotypes (good result); most were original haplotypes in H0. In about 1/3 cases H contains 7 to 10 haplotypes 

(acceptable result). It also restores the 6 haplotypes in H0 with introducing a few new ones. But we also observed 

for several times, H of greedy algorithm contains more than 12 haplotypes (bad result). It restores few original 

haplotypes while introducing many new ones. Table 1 shows the statistical data in detail. 

Table 1  Experimental results of different algorithms(small-scale) 

Performance of small-scale ( ) test cases 9~6,10,6,10 ==== genotemphap nnnm 
Algorithms 

Runtime (s) || H  ρ  

Branch-and-Bound algorithm 0.207 6 0.967 
Greedy algorithm 0.011 7.3 0.771 

Compound algorithm 0.092 6 0.967 

3.2.2   Medium-Scale instances 
These instances are closest to the cases in practice. The running time of branch-and-bound algorithm ranges 

from several seconds to more than 1 hour. Refer to Table 2 for the detail. 

Table 2  Experimental results of different algorithms (medium scale) 

Performance of medium scale ( ) test cases 18~14,20,10,15 ==== genotemphap nnnm 
Algorithms 

Runtime (s) || H  ρ  

Branch-and-Bound algorithm 848.2 10 0.960 
Greedy algorithm 0.122 11.9 0.716 

Compound algorithm 22.9 10 0.960 

The proportion of good results, acceptable results and bad results in the output of the greedy algorithm is 
somewhat similar to that of the small-scale instances, so the discussion is omitted here. 

We notice that if we get a tight initial bound from the greedy algorithm, the running time of the compound 

algorithm is greatly reduced. Otherwise, if the greedy algorithm gives a bad initial bound, it could hardly reduce the 

running time of the compound algorithm.  

3.2.3   Large-Scale instances 
Due to the exponential increasing in time, the original branch-and-bound algorithm is not available for the 

large-scale test cases. Please refer to Table 3 for the result of the greedy algorithm and the compound algorithm. 

Table 3  Experimental results of different algorithms (large-scale) 

Performance of large scale ( ) test cases 30~26,30,15,20 ==== genotemphap nnnm 
Algorithms 

Runtime (s) || H  ρ  

Branch-and-Bound algorithm N/A N/A N/A 
Greedy algorithm 0.578 17.5 0.701 

Compound algorithm 1062.0 15 0.954 
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3.3   Comparisons with the other prevailed programs 

To demonstrate the efficiency and performance of our algorithms, we’ll have them compared with some other 
prevailed programs. HAPINFERX is based on Clark’s algorithm and offered by Dr. Clark. It’s a quite simple yet 
widely applied program. PHASE is another prevailed program based on a statistical model. It can be downloaded 
freely from Dr. Stephens’ homepage. In order to evaluate the systems on any sample that has no clue about 
evolutionary history, we adopt random data in this subsection.  

Their runtimes are recorded in Table 4. From it we can figure out that HAPINFERX and the greedy algorithm 
run much more quickly, and their execution times increase smoothly as the numbers of samples increase. PHASE 
runs far slower, although its execution times also increase smoothly. The execution times of Branch-and-Bound and 
the compound algorithm increase rapidly, in the manner of exponential increase. However, the latter is still much 
more efficient than the former and can be applied to larger instances. 

Table 4  Comparison of the running times of different programs (m=10, nhap=20) 

Runtime (s) of instances of Algorithms 
ngeno=10 ngeno=20 ngeno=30 ngeno=40 

HAPINFERX 0.012 0.015 0.018 0.020 
PHASE 710.041 1529.273 2222.304 2746.186 

Branch-and-Bound 0.134 22.186 1782.153 N/A 
Greedy 0.011 0.083 0.265 0.628 

Compound 0.072 1.782 19.622 220.717 

We plot the accurate rates of the four algorithms on instances of m =10, nhap =20 and different sample sizes 
(ngeno=10, 20, 30, 40. Different from the former subsection, there are few duplicate genotypes.) in Fig.4. Both the 
branch-and-bound algorithm and the compound algorithm are complete algorithms for the parsimony model, so 
their performances are the same, which is denoted by a single line (the line of Complete) in the figure.  
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Fig.4  Comparison of the accurate rates of different programs (m=10, nhap =10) 
e accurate rates increase as the number of samples increases. But in all cases, our complete 
SE are better than the greedy algorithm and HAPINFERX. All the algorithms perform badly 
ll as m/2. When ngeno is large enough, our complete algorithms and PHASE can resolve the 
rrectly with high probabilities (the accurate rates are greater than 0.9). 

 our experiments that if we find the optimal or near optimal solutions for the instance, we can 
haplotypes with a high probability and high precision (both recρ and accρ are close to 1). Which 

ity of the parsimony model. 
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Due to the exponential increasing characteristics of haplotyping by maximum parsimony, the original 
branch-and-bound algorithm can not deal with large-scale instances. Our greedy algorithm always ran fast, yielding 
good or acceptable result for more than 2/3 cases. The compounded algorithm has both strength of the greedy 
algorithm and the branch-and-bound algorithm: it runs fast and keeps a high accurate rate to reconstruct the original 
haplotypes. 

4   Conclusions 

Compared with the existing models on the haplotyping problem, the new one that integrates the maximum 
parsimony principle could be applied in wider fields. In this paper we bring forward a greedy algorithm and a 
compound algorithm that combines the greedy policy with the branch-and-bound strategy in a uniform framework. 
The approximation greedy algorithm runs much faster than the complete branch-and-bound algorithm, and outputs 
pretty well results. The newly compounded algorithm is also a complete algorithm and is much more efficient than 
the original branch-and-bound algorithm. It can be applied to instances of much larger scales. Our experiments on 
some simulation data demonstrate their practicability. 

However the running time of the compound algorithm increases rapidly with the scale of the data sample. It is 
efficient in most cases, but in the cases of much larger scales, more delicate algorithms are desirable.  
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